Advanced Search
Article Contents

Approximations of the Scattering Phase Functions of Particles


doi: 10.1007/s00376-006-0802-y

  • Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically realistic model in bridging form is described to approximate the scattering phase function of particles. When compared with the exact method, the bridging technique reported here provides a reasonable approximation to the Mie results over a broader range of angles and size parameters, and it demonstrates the advantage of being computationally economic. In addition, the new phase function model can be essentially extended to other shapes and conveniently used in more complicated scattering and emission problems related to the solutions of the radiative transfer equations.
  • [1] Cai Qiming, Kuo-Nan Liou, 1985: CALCULATION ON THE LIGHT SCATTERING FUNCTION OF HEXAGONAL ICE CRYSTALS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 446-454.  doi: 10.1007/BF02678743
    [2] Mao Jietai, Luan Shengji, 1985: DERIVATION OF SCATTERING PHASE FUNCTION FROM CLEAR SKY BRIGHTNESS DISTRIBUTION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 129-131.  doi: 10.1007/BF03179745
    [3] Yun QIAN, Teppei J. YASUNARI, Sarah J. DOHERTY, Mark G. FLANNER, William K. M. LAU, MING Jing, Hailong WANG, Mo WANG, Stephen G. WARREN, Rudong ZHANG, 2015: Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 64-91.  doi: 10.1007/s00376-014-0010-0
    [4] Chunsheng ZHAO, Yingli YU, Ye KUANG, Jiangchuan TAO, Gang ZHAO, 2019: Recent Progress of Aerosol Light-scattering Enhancement Factor Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1015-1026.  doi: 10.1007/s00376-019-8248-1
    [5] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [6] WANG Gengchen, BAI Jianhui, KONG Qinxin, Alexander EMILENKO, 2005: Black Carbon Particles in the Urban Atmosphere in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 640-646.  doi: 10.1007/BF02918707
    [7] Hui XIAO, Yan YIN, Pengguo ZHAO, Qilin WAN, Xiantong LIU, 2020: Effect of Aerosol Particles on Orographic Clouds: Sensitivity to Autoconversion Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 229-238.  doi: 10.1007/s00376-019-9037-6
    [8] Hui HE, Xueliang GUO, Xiang'e LIU, Qian GAO, Xingcan JIA, 2016: Mesoscale Numerical Simulation Study of Warm Fog Dissipation by Salt Particles Seeding, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 579-592.  doi: 10.1007/s00376-015-5151-2
    [9] Chuanfeng ZHAO, Yanan LI, Fang ZHANG, Yele SUN, Pucai WANG, 2018: Growth Rates of Fine Aerosol Particles at a Site near Beijing in June 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 209-217.  doi: 10.1007/s00376-017-7069-3
    [10] Ping LI, Siyao YUE, Xiaoyang YANG, Di LIU, Qiang ZHANG, Wei HU, Shengjie HOU, Wanyu ZHAO, Hong REN, Gang LI, Yuanguan GAO, Junjun DENG, Qiaorong XIE, Yele SUN, Zifa WANG, Pingqing FU, 2023: Fluorescence Properties and Chemical Composition of Fine Particles in the Background Atmosphere of North China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1159-1174.  doi: 10.1007/s00376-022-2208-x
    [11] YU Jianhua, Benjamin GUINOT, YU Tong, WANG Xin, LIU Wenqing, 2005: Seasonal Variations of Number Size Distributions and Mass Concentrations of Atmospheric Particles in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 401-407.  doi: 10.1007/BF02918753
    [12] YU Jianhua, CHEN Tian, Benjamin GUINOT, Helene CACHIER, YU Tong, LIU Wenqing, WANG Xin, 2006: Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 468-473.  doi: 10.1007/s00376-006-0468-5
    [13] SHAO Longyi, LI Weijun, XIAO Zhenghui, SUN Zhenquan, 2008: The Mineralogy and Possible Sources of Spring Dust Particles over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 395-403.  doi: 10.1007/s00376-008-0395-8
    [14] Chen Ruirong, 1985: AN EXPERIMENTAL STUDY ON THE DRAG EFFECT OF PRECIPITATING PARTICLES ON FLUID MOTION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 35-44.  doi: 10.1007/BF03179735
    [15] Wen Jingsong, Wang Yongguang, 1995: The Effect of Weak Shear-induced Motion on Brownian Coagulation of Aerosol Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 187-194.  doi: 10.1007/BF02656831
    [16] Zhang Daizhou, Tang Xiaoyan, Qin Yu, Yasunobu Iwasaka, Gai Xiuzhen, 1995: Tests for Individual Sulfate-Containing Particles in Urban Atmosphere in Beijin, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 343-350.  doi: 10.1007/BF02656983
    [17] WEN Tianxue, WANG Yuesi, CHANG Shih-Yu, LIU Guangren, 2006: On-line Measurement of Water-Soluble Ions in Ambient Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 586-592.  doi: 10.1007/s00376-006-0586-0
    [18] Chen Panqin, 1987: MEASUREMENTS OF THE DRY DEPOSITION VELOCITY FOR SUSPENDED PARTICLES OVER THE SUBURBS OF BEIJING, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 323-331.  doi: 10.1007/BF02663602
    [19] YANG Shuai, GAO Shouting, LU Chungu, 2014: A Generalized Frontogenesis Function and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1065-1078.  doi: 10.1007/s00376-014-3228-y
    [20] Ye Weizuo, 1986: THE APPLICATION OF DELTA FUNCTION TO THE ALBEDO OF CLOUDS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 245-251.  doi: 10.1007/BF02682558

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2006
Manuscript revised: 10 September 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Approximations of the Scattering Phase Functions of Particles

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Key Laboratory for Atmospheric Chemistry of CMA, Chinese Academy of Meteorol,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory for Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically realistic model in bridging form is described to approximate the scattering phase function of particles. When compared with the exact method, the bridging technique reported here provides a reasonable approximation to the Mie results over a broader range of angles and size parameters, and it demonstrates the advantage of being computationally economic. In addition, the new phase function model can be essentially extended to other shapes and conveniently used in more complicated scattering and emission problems related to the solutions of the radiative transfer equations.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return