Advanced Search
Article Contents

Decadal/Interdecadal Variations of the Ocean Temperature and its Impacts on Climate


doi: 10.1007/s00376-006-0964-7

  • Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7– 10-years mode and 25–35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long-term predictability, which is a great challenge in climate research.
  • [1] J.M. Pathan, 1994: Diurnal Variation of Southwest Monsoon Rainfall at Indian Stations, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 111-120.  doi: 10.1007/BF02657000
    [2] ZHANG Lixia* and ZHOU Tianjun, , 2014: An Assessment of Improvements in Global Monsoon Precipitation Simulation in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 165-178.  doi: 10.1007/s00376-013-2164-6
    [3] Yueyue LI, Li DAN, Jing PENG, Junbang WANG, Fuqiang YANG, Dongdong GAO, Xiujing YANG, Qiang YU, 2021: Response of Growing Season Gross Primary Production to El Niño in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1580-1595.  doi: 10.1007/s00376-021-0265-1
    [4] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [5] C. V. Singh, R. S. Adhikari, H. P. Garg, 2002: Analysis of the Statistical Behaviour of Daily Maximum and Monthly Rainfall Data at New Delhi During Monsoon Period, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 425-432.  doi: 10.1007/s00376-002-0076-y
    [6] XU Yongfu, HUANG Yao, LI Yangchun, 2012: Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1027-1047.  doi: 10.1007/s00376-012-1206-9
    [7] BUHE Cholaw, Ulrich CUBASCH, LIN Yonghui, JI Liren, 2003: The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 755-766.  doi: 10.1007/BF02915400
    [8] HAN Zuoqiang, YAN Zhongwei*, LI Zhen, LIU Weidong, and WANG Yingchun, 2014: Impact of Urbanization on Low-Temperature Precipitation in Beijing during 19602008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 48-56.  doi: 10.1007/s00376-013-2211-3
    [9] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [10] P. P. BABURAJ, S. ABHILASH, K. MOHANKUMAR, A. K. SAHAI, 2020: On the Epochal Variability in the Frequency of Cyclones during the Pre-Onset and Onset Phases of the Monsoon over the North Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 634-651.  doi: 10.1007/s00376-020-9070-5
    [11] Ge Ling, Liang Jiaxing, Chen Yiliang, 1996: Spatial / Temporal Features of Antarctic Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 375-382.  doi: 10.1007/BF02656854
    [12] SUN Guodong, MU Mu, 2011: Response of a Grassland Ecosystem to Climate Change in a Theoretical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1266-1278.  doi: 10.1007/s00376-011-0169-6
    [13] CHOU Jieming, DONG Wenjie, FENG Guolin, 2010: Application of an Economy--Climate Model to Assess the Impact of Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 957-965.  doi: 10.1007/s00376-009-8166-8
    [14] Dai Xiaosu, Ding Yihui, 1994: A Modeling Study of Climate Change and Its Implication for Agriculture in China Part II: The Implication of Climate Change for Agriculture in China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 499-506.  doi: 10.1007/BF02658171
    [15] Gao Ge, Huang Chaoying, 2001: Climate Change and Its Impact on Water Resources in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 718-732.  doi: 10.1007/BF03403497
    [16] JI Mingxia, HUANG Jianping, XIE Yongkun, LIU Jun, 2015: Comparison of Dryland Climate Change in Observations and CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1565-1574.  doi: 10.1007/s00376-015-4267-8
    [17] DING Yihui, REN Guoyu, ZHAO Zongci, XU Ying, LUO Yong, LI Qiaoping, ZHANG Jin, 2007: Detection, Causes and Projection of Climate Change over China: An Overview of Recent Progress, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 954-971.  doi: 10.1007/s00376-007-0954-4
    [18] Chong-yu XU, Elin WIDN, Sven HALLDIN, 2005: Modelling Hydrological Consequences of Climate Change-Progress and Challenges, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 789-797.  doi: 10.1007/BF02918679
    [19] BAI Jie, GE Quansheng, DAI Junhu, 2011: The Response of First Flowering Dates to Abrupt Climate Change in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 564-572.  doi: 10.1007/s00376-010-9219-8
    [20] Jeong-Hyeong LEE, Byungsoo KIM, Keon-Tae SOHN, Won-Tae KOWN, Seung-Ki MIN, 2005: Climate Change Signal Analysis for Northeast Asian Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 159-171.  doi: 10.1007/BF02918506

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2006
Manuscript revised: 10 November 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Decadal/Interdecadal Variations of the Ocean Temperature and its Impacts on Climate

  • 1. State Key Laboratory of Numerical Modeling for Atmospherics Science and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Institute of Meteorology, PLA University of Science and Technology, N,State Key Laboratory of Numerical Modeling for Atmospherics Science and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospherics Science and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospherics Science and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7– 10-years mode and 25–35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long-term predictability, which is a great challenge in climate research.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return