Advanced Search
Article Contents

Seasonal Transition Features of Large-Scale Moisture Transport in the Asian-Australian Monsoon Region


doi: 10.1007/s00376-007-0001-5

  • Using NCEP/NCAR reanalysis data for the period of 1957--2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime ``great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some ``key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in ``key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.
  • [1] Jun Matsumoto, 1997: Seasonal Transition of Summer Rainy Season over Indochina and Adjacent Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 231-245.  doi: 10.1007/s00376-997-0022-0
    [2] SUN Li, SHEN Baizhu, GAO Zongting, SUI Bo, Lesheng BAI, Sheng-Hung WANG, AN Gang, LI Jian, 2007: The Impacts of Moisture Transport of East Asian Monsoon on Summer Precipitation in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 606-618.  doi: 10.1007/s00376-007-0606-8
    [3] WU Zhiwei, LI Jianping, 2008: Prediction of the Asian-Australian Monsoon Interannual Variations with the Grid-Point Atmospheric Model of IAP LASG (GAMIL), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 387-394.  doi: 0.1007/s00376-008-0387-8
    [4] XU Zhongfeng, QIAN Yongfu, FU Congbin, 2010: The Role of Land--sea Distribution and Orography in the Asian Monsoon. Part II: Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 528-542.  doi: 10.1007/s00376-009-9045-z
    [5] XU Zhongfeng, QIAN Yongfu, FU Congbin, 2010: The Role of Land--sea Distribution and Orography in the Asian Monsoon. Part I: Land--sea Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 403-420.  doi: 10.1007/s00376-009-9005-7
    [6] SUN Ying, DING Yihui, 2008: Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 279-296.  doi: 10.1007/s00376-008-0279-y
    [7] Gudongze LI, Haoming CHEN, Mingyue XU, Chun ZHAO, Lei ZHONG, Rui LI, Yunfei FU, Yanhong GAO, 2022: Impacts of Topographic Complexity on Modeling Moisture Transport and Precipitation over the Tibetan Plateau in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1151-1166.  doi: 10.1007/s00376-022-1409-7
    [8] Lixia ZHANG, Dan ZHAO, Tianjun ZHOU, Dongdong PENG, Chan XIAO, 2021: Moisture Origins and Transport Processes for the 2020 Yangtze River Valley Record-Breaking Mei-yu Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2125-2136.  doi: 10.1007/s00376-021-1097-8
    [9] Linhao ZHONG, Lijuan HUA, Zhaohui GONG, Yao YAO, Lin MU, 2022: Quantifying the Spatial Characteristics of the Moisture Transport Affecting Precipitation Seasonality and Recycling Variability in Central Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 967-984.  doi: 10.1007/s00376-021-1383-5
    [10] SUN Li, SHEN Baizhu, SUI Bo, 2010: A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1399-1414.  doi: 10.1007/s00376-010-9087-2
    [11] Irina V. GORODETSKAYA, Tiago SILVA, Holger SCHMITHÜSEN, Naohiko HIRASAWA, 2020: Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 455-476.  doi: 10.1007/s00376-020-9221-8
    [12] HE Jinhai, WEN Min, WANG Lijuan, XU Haiming, 2006: Characteristics of the Onset of the Asian Summer Monsoon and the Importance of Asian-Australian “Land Bridge”, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 951-963.  doi: 10.1007/s00376-006-0951-z
    [13] Lin WANG, Hong-Li REN, Fang ZHOU, Nick DUNSTONE, Xiangde XU, 2023: Dynamical Predictability of Leading Interannual Variability Modes of the Asian-Australian Monsoon in Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1998-2012.  doi: 10.1007/s00376-023-2288-2
    [14] Lin Chunyu, 1985: STABILIZATION OF SUMMER MONSOON IN MIDDLE AND LOWER REACHES OF THE CHANGJIANG RIVER AND SEASONAL TRANSITION OF EAST-ASIAN CIRCULATION PATTERN IN EARLY SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 376-384.  doi: 10.1007/BF02677254
    [15] William J. RANDEL, Laura L. PAN, Jianchun BIAN, 2016: Workshop on Dynamics, Transport and Chemistry of the UTLS Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1096-1098.  doi: 10.1007/s00376-016-6169-9
    [16] Zhiyan ZUO, Renhe ZHANG, 2016: Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 151-163.  doi: 10.1007/s00376-015-5024-8
    [17] Ji Liren, S.Tibaldi, 1984: NUMERICAL EXPERIMENTS ON THE SEASONAL TRANSITION OF GENERAL CIRCULATION OVER ASIA--PART Ⅱ, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 188-205.  doi: 10.1007/BF02678131
    [18] Ji Liren, S.Tibaldi, 1984: NUMERICAL EXPERIMENT ON THE SEASONAL TRANSITION OF GENERAL CIRCULATION OVER ASIA - PART Ⅰ, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 128-149.  doi: 10.1007/BF03187624
    [19] Xiao DONG, Feng XUE, 2016: Phase Transition of the Pacific Decadal Oscillation and Decadal Variation of the East Asian Summer Monsoon in the 20th Century, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 330-338.  doi: 10.1007/s00376-015-5130-7
    [20] Zhu Yanfeng, Chen Longxun, 2002: The Relationship between the Asian/Australian Monsoon and ENSO on a Quasi-Four-Year Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 727-740.  doi: 10.1007/s00376-002-0012-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2007
Manuscript revised: 10 January 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Seasonal Transition Features of Large-Scale Moisture Transport in the Asian-Australian Monsoon Region

  • 1. Department of Atmospheric Sciences, Najing University of Information Science and Technology, Nanjing, 210044,Department of Atmospheric Sciences, Najing University of Information Science and Technology, Nanjing, 210044; Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, 100081,Department of Atmospheric Sciences, Najing University of Information Science and Technology, Nanjing, 210044; Department of Atmospheric Sciences, Najing University of Information Science and Technology, Nanjing, 210044,Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan,Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, 100081

Abstract: Using NCEP/NCAR reanalysis data for the period of 1957--2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime ``great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some ``key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in ``key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return