Advanced Search
Article Contents

Seasonally Varying Reference Atmospheres for East Asia


doi: 10.1007/s00376-007-0181-z

  • Vertical profiles of seasonally varying pressure, temperature, water vapor, and trace gases (O3, N2O, CO, CH4), representing atmospheric conditions up to a height of 100 km over the East Asia region (30o--50oN, 110o--150oE) were constructed by using various observation data, model outputs of atmospheric thermodynamic parameters, and gaseous concentrations. Optical characteristics of the obtained East Asia reference atmospheres were compared with those from typical midlatitude summer and winter atmospheres. It was noted that, in the water vapor field, there are major differences between the two model atmospheres during the summer. The resultant impact during the summer of water vapor difference on incoming solar fluxes at the surface and emitted terrestrial fluxes at the top of the atmosphere are 14.3 W m-2 and 6.5 W m-2, respectively. On the other hand, the winter difference between East Asian and midlatitude atmospheres appears to be insignificant. Reference atmospheres for the spring and fall are also available. Utilizing the constructed atmospheric profiles as inputs to the radiative transfer model, it is expected that the constructed seasonally varying reference atmospheres can facilitate better descriptions of optical properties in East Asia.
  • [1] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [2] DUAN Minzheng, Qilong MIN, LU Daren, 2010: A Polarized Radiative Transfer Model Based on Successive Order of Scattering, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 891-900.  doi: 10.1007/s00376-009-9049-8
    [3] SHI Chong, WANG Pucai, Teruyuki NAKAJIMA, Yoshifumi OTA, TAN Saichun, SHI Guangyu, 2015: Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere-Ocean System, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1186-1196.  doi: 10.1007/s00376-015-4222-8
    [4] Yaping Zhou, Ken C. Rutledge, Thomas P. Charlock, Norman G. Loeb, Seiji Kato, 2001: Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 984-1004.  doi: 10.1007/BF03403518
    [5] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [6] YANG Lu, WANG Zhenhui, CHU Yanli, ZHAO Hang, TANG Min, 2014: Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1386-1394.  doi: 10.1007/s00376-014-3165-9
    [7] Yang Jingmei, Qiu Jinhuan, 1992: An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 483-490.  doi: 10.1007/BF02677081
    [8] DAI Qiudan, SUN Shufen, 2007: A Simplified Scheme of the Generalized Layered Radiative Transfer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 213-226.  doi: 10.1007/s00376-007-0213-8
    [9] DAI Qiudan, SUN Shufen, 2006: A Generalized Layered Radiative Transfer Model in the Vegetation Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 243-257.  doi: 10.1007/s00376-006-0243-7
    [10] Qiu Jinhuan, 1989: Theoretical Analysis of Retrieving Atmospheric Columnar Mie Optical Depth from Downward Total Solar Radiative Flux, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 313-324.  doi: 10.1007/BF02661537
    [11] Liu Jinli, Lin Longfu, 1994: Microwave Simulations of Precipitation Distribution with Two Radiative Transfer Models, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 470-478.  doi: 10.1007/BF02658168
    [12] Chen ZHOU, Yincheng LIU, Quan WANG, 2022: Calculating the Climatology and Anomalies of Surface Cloud Radiative Effect Using Cloud Property Histograms and Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2124-2136.  doi: 10.1007/s00376-021-1166-z
    [13] ZOU Han, LI Peng, MA Shupo, ZHOU Libo, ZHU Jinhuan, 2012: The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 435-440.  doi: 10.1007/s00376-011-0233-2
    [14] Qiu Jinhuan, 1999: Constraint Inversion Algorithm of Lidar Equation for Deriving Aerosol Optical Property, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 216-228.  doi: 10.1007/BF02973083
    [15] F. Momo TEMGOUA, L. Akana NGUIMDO, D. NJOMO, 2024: Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 278-292.  doi: 10.1007/s00376-023-2257-9
    [16] Mingyue SU, Chao LIU, Di DI, Tianhao LE, Yujia SUN, Jun LI, Feng LU, Peng ZHANG, Byung-Ju SOHN, 2023: A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS), ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1844-1858.  doi: 10.1007/s00376-023-2293-5
    [17] Li Jun, 1994: Temperature and Water Vapor Weighting Functions from Radiative Transfer Equation with Surface Emissivity and Solar Reflectivity, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 421-426.  doi: 10.1007/BF02658162
    [18] Wu Guoxiong, Stefano Tibaldi, 1987: THE EFFECTS OF MECHANICAL FORCING ON THE MEAN MERIDIONAL CIRCULATION AND TRANSFER PROPERTIES OF THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 24-42.  doi: 10.1007/BF02656659
    [19] Xiaoyan WU, Jinyuan XIN, Wenyu ZHANG, Chongshui GONG, Yining MA, Yongjing MA, Tianxue WEN, Zirui LIU, Shili TIAN, Yuesi WANG, Fangkun WU, 2020: Optical, Radiative and Chemical Characteristics of Aerosol in Changsha City, Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1310-1322.  doi: 10.1007/s00376-020-0076-9
    [20] WANG Hong, SHI Guangyu, LI Shuyan, LI Wei, WANG Biao, HUANG Yanbin, 2006: The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 431-441.  doi: 10.1007/s00376-006-0431-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2007
Manuscript revised: 10 March 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Seasonally Varying Reference Atmospheres for East Asia

  • 1. School of Earth and Environmental Sciences, Seoul National University, Seoul \mbox 151-747, Korea,School of Earth and Environmental Sciences, Seoul National University, Seoul \mbox 151-747, Korea

Abstract: Vertical profiles of seasonally varying pressure, temperature, water vapor, and trace gases (O3, N2O, CO, CH4), representing atmospheric conditions up to a height of 100 km over the East Asia region (30o--50oN, 110o--150oE) were constructed by using various observation data, model outputs of atmospheric thermodynamic parameters, and gaseous concentrations. Optical characteristics of the obtained East Asia reference atmospheres were compared with those from typical midlatitude summer and winter atmospheres. It was noted that, in the water vapor field, there are major differences between the two model atmospheres during the summer. The resultant impact during the summer of water vapor difference on incoming solar fluxes at the surface and emitted terrestrial fluxes at the top of the atmosphere are 14.3 W m-2 and 6.5 W m-2, respectively. On the other hand, the winter difference between East Asian and midlatitude atmospheres appears to be insignificant. Reference atmospheres for the spring and fall are also available. Utilizing the constructed atmospheric profiles as inputs to the radiative transfer model, it is expected that the constructed seasonally varying reference atmospheres can facilitate better descriptions of optical properties in East Asia.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return