Advanced Search
Article Contents

An Intercomparison of Rules for Testing the Significance of Coupled Modes of Singular Value Decomposition Analysis


doi: 10.1007/s00376-007-0199-2

  • This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD), and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis, nonparametric bootstrap, random-phase test, and a new rule named modified parallel analysis. A numerical experiment is conducted to quantitatively compare the performance of the four rules in judging whether a coupled mode of SVD is significant as parameters such as the sample size, the number of grid points, and the signal-to-noise ratio vary. The results show that the four rules perform better with lower ratio of the number of grid points to sample size. Modified parallel analysis and nonparametric bootstrap perform best to abandon the spurious coupled modes, but the latter is better than the former to retain the significant coupled modes when the sample size is not much larger than the number of grid points. Parallel analysis and random-phase test are robust to abandon the spurious coupled modes only when either (1) the observations at the grid points are spatially uncorrelated, or (2) the coupled signal is very strong for parallel analysis and is not weak for random-phase test. The reasons affecting the accuracy of the test rules are discussed.
  • [1] Xiaojuan SUN, Siyan LI, Julian X. L WANG, Panxing WANG, Dong GUO, 2022: A New Method of Significance Testing for Correlation-Coefficient Fields and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 529-535.  doi: 10.1007/s00376-021-1196-6
    [2] WANG Hanjie, SHI Weilai, CHEN Xiaohong, 2006: The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 355-364.  doi: 10.1007/s00376-006-0355-0
    [3] Jing WANG, Bin WANG, Juanjuan LIU, Yongzhu LIU, Jing CHEN, Zhenhua HUO, 2020: Application and Characteristic Analysis of the Moist Singular Vector in GRAPES-GEPS, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1164-1178.  doi: 10.1007/s00376-020-0092-9
    [4] T. S. Spassova, 1992: A Theoretical Test of the Geostrophic Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 251-255.  doi: 10.1007/BF02657516
    [5] Zhang Daomin, Sheng Hua, Ji Liren, 1990: Development and Test of Hydrostatic Extraction Scheme in Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 142-153.  doi: 10.1007/BF02919152
    [6] Zhang Daomin, Li Jinlong, Ji Liren, Huang Boyin, Wu Wanli, Chen Jiabin, Song Zhengshan, 1995: A Global Spectral Model and Test of Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 67-78.  doi: 10.1007/BF02661288
    [7] Liu Jianwen, Dong Peiming, 2001: Short-range Climate Prediction Experiment of the Southern Oscillation Index Based on the Singular Spectrum Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 873-881.
    [8] YANG Yang, REN Rongcai, Ming CAI, RAO Jian, 2015: Attributing Analysis on the Model Bias in Surface Temperature in the Climate System Model FGOALS-s2 through a Process-Based Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 457-469.  doi: 10.1007/s00376-014-4061-z
    [9] JIANG Yuan, LIU Liping, 2014: A Test Pattern Identification Algorithm and Its Application to CINRAD/SA(B) Data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 331-343.  doi: 10.1007/s00376-013-2315-9
    [10] Chen Jiabin, Ji Liren, Wu Wanli, 1987: DESIGN AND TEST OF AN IMPROVED SCHEME FOR GLOBAL SPECTRAL MODEL WITH REDUCED TRUNCATION ERROR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 156-168.  doi: 10.1007/BF02677062
    [11] Peipei YU, Chunxiang SHI, Ling YANG, Shuai SHAN, 2020: A New Temperature Channel Selection Method Based on Singular Spectrum Analysis for Retrieving Atmospheric Temperature Profiles from FY-4A/GIIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 735-750.  doi: 10.1007/s00376-020-9249-9
    [12] Xueqian SUN, Shuanglin LI, Bo LIU, 2019: Comparative Analysis of the Mechanisms of Intensified Summer Warming over Europe−West Asia and Northeast Asia since the Mid-1990s through a Process-based Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1340-1354.  doi: 10.1007/s00376-019-9053-6
    [13] LIU Li, WANG Tijian, SUN Zhenhai, WANG Qingeng, ZHUANG Bingliang, HAN Yong, LI Shu, 2012: Eddy Covariance Tilt Corrections over a Coastal Mountain Area in South-east China: Significance for Near-Surface Turbulence Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1264-1278.  doi: 10.1007/s00376-012-1052-9
    [14] Xue Jishan, Wang Kangling, Wang Zhiming, Huang Minqiang, Zhang Xuehong, Yuan Chongguang, 1988: TEST OF A TROPICAL LIMITED AREA NUMERICAL PREDIC-TION MODEL INCLUDING EFFECT OF REAL TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 1-14.  doi: 10.1007/BF02657341
    [15] CAO Jie, Qin XU, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part II: Numerical Methods and Test Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1445-1458.  doi: 10.1007/s00376-011-0186-5
    [16] SHENG Chunyan, Ming XUE, GAO Shouting, 2009: The Structure and Evolution of Sea Breezes During the Qingdao Olympics Sailing Test Event in 2006, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 132-142.  doi: 10.1007/s00376-009-0132-y
    [17] Lu YANG, Cong-Lan CHENG, Yu XIA, Min CHEN, Ming-Xuan CHEN, Han-Bin ZHANG, Xiang-Yu HUANG, 2023: Evaluation of the Added Value of Probabilistic Nowcasting Ensemble Forecasts on Regional Ensemble Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 937-951.  doi: 10.1007/s00376-022-2056-8
    [18] YANG Peicai, WANG Geli, BIAN Jianchun, ZHOU Xiuji, 2010: The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 845-854.  doi: 10.1007/s00376-009-9128-x
    [19] Bi Xunqiang, 1997: Parallel Computing of a Climate Model on the Dawn 1000 by Domain Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 569-572.  doi: 10.1007/s00376-997-0075-0
    [20] Xin LIU, Jing CHEN, Yongzhu LIU, Zhenhua HUO, Zhizhen XU, Fajing CHEN, Jing WANG, Yanan MA, Yumeng HAN, 2024: An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 545-563.  doi: 10.1007/s00376-023-3035-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2007
Manuscript revised: 10 March 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

An Intercomparison of Rules for Testing the Significance of Coupled Modes of Singular Value Decomposition Analysis

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing

Abstract: This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD), and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis, nonparametric bootstrap, random-phase test, and a new rule named modified parallel analysis. A numerical experiment is conducted to quantitatively compare the performance of the four rules in judging whether a coupled mode of SVD is significant as parameters such as the sample size, the number of grid points, and the signal-to-noise ratio vary. The results show that the four rules perform better with lower ratio of the number of grid points to sample size. Modified parallel analysis and nonparametric bootstrap perform best to abandon the spurious coupled modes, but the latter is better than the former to retain the significant coupled modes when the sample size is not much larger than the number of grid points. Parallel analysis and random-phase test are robust to abandon the spurious coupled modes only when either (1) the observations at the grid points are spatially uncorrelated, or (2) the coupled signal is very strong for parallel analysis and is not weak for random-phase test. The reasons affecting the accuracy of the test rules are discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return