Advanced Search
Article Contents

A Simplified Scheme of the Generalized Layered Radiative Transfer Model


doi: 10.1007/s00376-007-0213-8

  • In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance $\alpha_{\text f}$ (written as $\alpha_1$ for direct beam radiation) and transmittance $\beta_{\text f}$ (written as $\beta_1$ for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance ($\alpha_{\text b})$ and transmittance $\beta_{\text b}$ for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., $\alpha_{\text f}=\alpha_{\text b}$ and $\beta_{\text f}=\beta_{\text b}$. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing.
  • [1] Liu Yudi, Ji Zhongzhen, Wang Bin, 2002: Study on Computational Properties of Several Vertical Grids with a Nonhydrostatic Model in Comparison to Analytical Solutions, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 528-543.  doi: 10.1007/s00376-002-0084-y
    [2] DAI Qiudan, SUN Shufen, 2006: A Generalized Layered Radiative Transfer Model in the Vegetation Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 243-257.  doi: 10.1007/s00376-006-0243-7
    [3] LI Qian, SUN Shufen, DAI Qiudan, 2009: The Numerical Scheme Development of a Simplified Frozen Soil Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 940-950.  doi: 10.1007/s00376-009-7174-z
    [4] LI Jiandong, Zhian SUN, LIU Yimin, Jiangnan LI, Wei-Chyung WANG, WU Guoxiong, 2012: A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1185-1199.  doi: 10.1007/s00376-012-1257-y
    [5] GUO Xia, LU Daren, LU Yao, 2007: A Simple but Accurate Ultraviolet Limb-Scan Spherically-Layered Radiative-Transfer-Model Based on Single-Scattering Physics, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 619-630.  doi: 10.1007/s00376-007-0619-3
    [6] Guo Yufu, Chao Jiping, 1984: SIMPLIFIED DYNAMICAL ANOMALY MODEL FOR LONG-RANGE NUMERICAL FORECASTS, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 30-52.  doi: 10.1007/BF03187614
    [7] Sun Shufen, Xue Yongkang, 2001: Implementing a New Snow Scheme in Simplified Simple Biosphere Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 335-354.  doi: 10.1007/BF02919314
    [8] R. Dhar, C. Guha-Roy, D. K. Sinha, 1991: On a Class of Solitary Wave Solutions of Atmospheric Nonlinear Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 357-362.  doi: 10.1007/BF02919618
    [9] HAN Xiao, ZHANG Meigen, ZHU Lingyun, and XU Liren, 2013: Model analysis of influences of aerosol mixing state upon its optical properties in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1201-1212.  doi: 10.1007/s00376-012-2150-4
    [10] Ji Jinjun, 1986: A SIMPLIFIED MODEL STUDY ON THE SHORT-TERM CLIMATIC EFFECT OF SNOWFALL ANOMALY IN MID-HIGH LATITUDES, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 443-453.  doi: 10.1007/BF02657934
    [11] DAI Tie, SHI Guangyu, Teruyuki NAKAJIMA, 2015: Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 743-758.  doi: 10.1007/s00376-014-4098-z
    [12] Zhangcai QIN, Xi DENG, Bronson GRISCOM, Yao HUANG, Tingting LI, Pete SMITH, Wenping YUAN, Wen ZHANG, 2021: Natural Climate Solutions for China: The Last Mile to Carbon Neutrality, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 889-895.  doi: 10.1007/s00376-021-1031-0
    [13] Fiona WILLIAMSON, Rob ALLAN, Guoyu REN, Tsz-cheung LEE, Wing-hong LUI, Hisayuki KUBOTA, Jun MATSUMOTO, Jürg LUTERBACHER, Clive WILKINSON, Kevin WOOD, 2018: Collating Historic Weather Observations for the East Asian Region: Challenges, Solutions, and Reanalyses, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 899-904.  doi: 10.1007/s00376-017-7259-z
    [14] Li Guoping, Lu Jinghua, 1996: Some Possible Solutions of Nonlinear Internal Inertial Gravity Wave Equations in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 244-252.  doi: 10.1007/BF02656866
    [15] Huang Sixun, 1996: Inversion and Ill-Posed Problem Solutions in Atmospheric Remote Sensing, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 489-504.  doi: 10.1007/BF03342039
    [16] Mu Mu, Zeng Qingcun, 1991: New Developments on Existence and Uniqueness of Solutions to Some Models in Atmospheric Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 383-398.  doi: 10.1007/BF02919262
    [17] Huang Sixun, Zhang Ming, 1993: Study on Atmospheric Travelling Wave Solutions and Review of Its Present Developments, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 435-446.  doi: 10.1007/BF02656968
    [18] WANG Hong, SHI Guangyu, LI Shuyan, LI Wei, WANG Biao, HUANG Yanbin, 2006: The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 431-441.  doi: 10.1007/s00376-006-0431-5
    [19] DUAN Minzheng, Qilong MIN, LU Daren, 2010: A Polarized Radiative Transfer Model Based on Successive Order of Scattering, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 891-900.  doi: 10.1007/s00376-009-9049-8
    [20] H.L. Kuo, 1995: Three-dimensional Global Scale Permanent-wave Solutions of the Nonlinear Quasigeostrophic Potential Vorticity Equation and Energy Dispersion, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 387-404.  doi: 10.1007/BF02657001

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2007
Manuscript revised: 10 March 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Simplified Scheme of the Generalized Layered Radiative Transfer Model

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance $\alpha_{\text f}$ (written as $\alpha_1$ for direct beam radiation) and transmittance $\beta_{\text f}$ (written as $\beta_1$ for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance ($\alpha_{\text b})$ and transmittance $\beta_{\text b}$ for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., $\alpha_{\text f}=\alpha_{\text b}$ and $\beta_{\text f}=\beta_{\text b}$. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return