Advanced Search
Article Contents

Roles of Multi-Scale Disturbances over the Tropical North Pacific in the Turnabout of 1997--98 El Nino


doi: 10.1007/s00376-007-0581-0

  • The space-time features of major vorticity disturbances over the western North Pacific during the 1997--98 El Nino ranked as one of the strongest events on record was investigated in this study. We distinguished the different roles that these disturbances had on different timescales in causing the reversal or turnabout of the El Nino event. Remarkable differences in the various disturbances of synoptic, intraseasonal, and interannual timescales were found in the time evolution, propagation, and in their contributions to the changes in near-equatorial zonal flow, which was crucial to the demise of the warm sea surface temperature anomalies in the central-eastern Pacific. It is hypothesized that the westward-traveling synoptic and intraseasonal oscillations in the western North Pacific might be considered as a self-provided negative feedback from the El Nino and played an additional role in its reversal in comparison with other interannual internal and external forcings. In this case, the off-equatorial synoptic and intraseaonal fluctuations served as a stochastic forcing for the tropical ocean and gave rise to the aperiodicity or irregularity of the El Nino-Southern Oscillation.
  • [1] LU Riyu*, DONG Huilin, SU Qin, and Hui DING, 2014: The 30-60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1-7.  doi: 10.1007/s00376-013-3019-x
    [2] Xiaomeng SONG, Renhe ZHANG, Xinyao RONG, 2019: Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, , 779-792.  doi: 10.1007/s00376-019-9029-6
    [3] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8
    [4] ZHOU Yang, JIANG Jing, Youyu LU, and HUANG Anning, 2013: Revealing the effects of the El Nio-Southern oscillation on tropical cyclone intensity over the western North Pacific from a model sensitivity study, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1117-1128.  doi: 10.1007/s00376-012-2109-5
    [5] ZHAO Haikun, WU Liguang, ZHOU Weican, 2010: Assessing the Influence of the ENSO on Tropical Cyclone Prevailing Tracks in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1361-1371.  doi: 10.1007/s00376-010-9161-9
    [6] Huang Ronghui, Zang Xiaoyun, Zhang Renhe, Chen Jilong, 1998: The Westerly Anomalies over the Tropical Pacific and Their Dynamical Effect on the ENSO Cycles during 1980-1994, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 135-151.  doi: 10.1007/s00376-998-0035-3
    [7] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [8] Li Chongyin, Han-Ru Cho, Jough-Tai Wang, 2002: CISK Kelvin Wave with Evaporation-Wind Feedback and Air-Sea Interaction A Further Study of Tropical Intraseasonal Oscillation Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 379-390.  doi: 10.1007/s00376-002-0073-1
    [9] Li Chongyin, Li Guilong, 1997: Evolution of Intraseasonal Oscillation over the Tropical Western Pacific / South China Sea and Its Effect to the Summer Precipitation in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 246-254.  doi: 10.1007/s00376-997-0023-z
    [10] Chen Xingyue, Wang Huijun, Xue Feng, Zeng Qingcun, 2001: Intraseasonal Oscillation: the Global Coincidence and Its Relationship with ENSO Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 445-453.  doi: 10.1007/BF02919323
    [11] KANG Xianbiao, HUANG Ronghui, WANG Zhanggui, ZHANG Rong-Hua, 2014: Sensitivity of ENSO Variability to Pacific Freshwater Flux Adjustment in the Community Earth System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1009-1021.  doi: 10.1007/s00376-014-3232-2
    [12] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6
    [13] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [14] Haikun ZHAO, Chunzai WANG, Ryuji YOSHIDA, 2016: Modulation of Tropical Cyclogenesis in the Western North Pacific by the Quasi-Biweekly Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1361-1375.  doi: 10.1007/s00376-016-5267-z
    [15] CAO Xi, CHEN Shangfeng, CHEN Guanghua, CHEN Wen, WU Renguang, 2015: On the Weakened Relationship between Spring Arctic Oscillation and Following Summer Tropical Cyclone Frequency over the Western North Pacific: A Comparison between 1968-1986 and 1989-2007, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1319-1328.  doi: 10.1007/s00376-015-4256-y
    [16] ZHENG Fei, ZHANG Rong-Hua, ZHU Jiang, , 2014: Effects of Interannual Salinity Variability on the Barrier Layer in the Western-Central Equatorial Pacific: A Diagnostic Analysis from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 532-542.  doi: 10.1007/s00376-013-3061-8
    [17] Shangfeng CHEN, Linye SONG, Wen CHEN, 2019: Interdecadal Modulation of AMO on the Winter North Pacific Oscillation−Following Winter ENSO Relationship, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1393-1403.  doi: 10.1007/s00376-019-9090-1
    [18] Li Wei, Yu Rucong, Liu Hailong, Yu Yongqiang, 2001: Impacts of Diurnal Cycle of SST on the Intraseasonal Variation of Surface Heat Flux over the Western PacificWarm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 793-806.
    [19] Weijie FENG, Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, Oscar Y. W. ZHANG, 2022: An Extreme Drought over South China in 2020/21 Concurrent with an Unprecedented Warm Northwest Pacific and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1637-1649.  doi: 10.1007/s00376-022-1456-0
    [20] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2007
Manuscript revised: 10 July 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Roles of Multi-Scale Disturbances over the Tropical North Pacific in the Turnabout of 1997--98 El Nino

  • 1. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081,Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081,NOAA Climate Prediction Center, Camp Springs, MD 20746, U.S.A.

Abstract: The space-time features of major vorticity disturbances over the western North Pacific during the 1997--98 El Nino ranked as one of the strongest events on record was investigated in this study. We distinguished the different roles that these disturbances had on different timescales in causing the reversal or turnabout of the El Nino event. Remarkable differences in the various disturbances of synoptic, intraseasonal, and interannual timescales were found in the time evolution, propagation, and in their contributions to the changes in near-equatorial zonal flow, which was crucial to the demise of the warm sea surface temperature anomalies in the central-eastern Pacific. It is hypothesized that the westward-traveling synoptic and intraseasonal oscillations in the western North Pacific might be considered as a self-provided negative feedback from the El Nino and played an additional role in its reversal in comparison with other interannual internal and external forcings. In this case, the off-equatorial synoptic and intraseaonal fluctuations served as a stochastic forcing for the tropical ocean and gave rise to the aperiodicity or irregularity of the El Nino-Southern Oscillation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return