Advanced Search
Article Contents

Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999


doi: 10.1007/s00376-007-0591-y

  • In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period>seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.
  • [1] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [2] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2005: A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 436-450.  doi: 10.1007/BF02918757
    [3] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [4] DONG Haiping, ZHAO Sixiong, ZENG Qingcun, 2007: A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 485-502.  doi: 10.1007/s00376-007-0485-z
    [5] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [6] Cheng Minghu, He Huizhong, Mao Dongyan, Qi Yanjun, Cui Zhehu, Zhou Fengxian, 2001: Study of 1998 Heavy Rainfall over the Yangtze River Basin Using TRMM Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 387-396.  doi: 10.1007/BF02919317
    [7] Chunguang CUI, Wen ZHOU, Hao YANG, Xiaokang WANG, Yi DENG, Xiaofang WANG, Guirong XU, Jingyu WANG, 2023: Analysis of the Characteristics of the Low-level Jets in the Middle Reaches of the Yangtze River during the Mei-yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 711-724.  doi: 10.1007/s00376-022-2107-1
    [8] NIU Tao, WANG Jizhi, YANG Yuanqin, LIU Hongli, CHEN Miao, LIU Jiyan, 2013: Development of a Meteorological and Hydrological Coupling Index for Droughts and Floods along the Yangtze River Valley of China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1653-1662.  doi: 10.1007/s00376-013-2303-0
    [9] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [10] Ping LIANG, Zhiqi ZHANG, Yihui DING, Zeng-Zhen HU, Qi CHEN, 2024: The 2022 Extreme Heatwave in Shanghai, Lower Reaches of the Yangtze River Valley: Combined Influences of Multiscale Variabilities, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 593-607.  doi: 10.1007/s00376-023-3007-8
    [11] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [12] Iman ROUSTA, Mehdi DOOSTKAMIAN, Esmaeil HAGHIGHI, Hamid Reza GHAFARIAN MALAMIRI, Parvane YARAHMADI, 2017: Analysis of Spatial Autocorrelation Patterns of Heavy and Super-Heavy Rainfall in Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1069-1081.  doi: 10.1007/s00376-017-6227-y
    [13] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [14] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [15] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [16] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [17] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [18] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7
    [19] A.K.Kulkarmi, B.N.Mandal, R.S.Sangam, 1994: A Study of Heavy Rainfall of 8-10 June, 1991 over Maharashtra, India, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 353-366.  doi: 10.1007/BF02658155
    [20] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2007
Manuscript revised: 10 July 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999

  • 1. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081

Abstract: In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period>seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return