Advanced Search
Article Contents

Real-Time Mesoscale Forecast Support During the CLAMS Field Campaign


doi: 10.1007/s00376-007-0599-3

  • This paper reports the use of a specialized, mesoscale, numerical weather prediction (NWP) system and a satellite imaging and prediction system that were set up to support the CLAMS (Chesapeake Lighthouse and Aircraft Measurements for Satellites) field campaign during the summer of 2001. The primary objective of CLAMS was to validate satellite-based retrievals of aerosol properties and vertical profiles of the radiative flux, temperature and water vapor. Six research aircraft were deployed to make detailed coincident measurements of the atmosphere and ocean surface with the research satellites that orbited overhead. The mesoscale weather modeling system runs in real-time to provide high spatial and temporal resolution for forecasts that are delivered via the World Wide Web along with a variety of satellite imagery and satellite location predictions. This system is a multi-purpose modeling system capable of both data analysis/assimilation and multi-scale NWP ranging from cloud-scale to larger than regional scale. This is a three-dimensional, non-hydrostatic compressible model in a terrain-following coordinate. The model employs advanced numerical techniques and contains detailed interactive physical processes. The utility of the forecasting system is illustrated throughout the discussion on the impact of the surface-wind forecast on BRDF (Bidirectional Reflectance Distribution Function) and the description of the cloud/moisture forecast versus the aircraft measurement.
  • [1] XUE Hai-Le, SHEN Xue-Shun, CHOU Ji-Fan, 2013: A Forecast Error Correction Method in Numerical Weather Prediction by Using Recent Multiple-time Evolution Data, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1249-1259.  doi: 10.1007/s00376-013-2274-1
    [2] Jiaqi Zheng, Qing Ling, Jia Li, Yerong Feng, 2023: Improving Short-Range Precipitation Forecast of Numerical Weather Prediction Through a Deep Learning-Based Mask Approach, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3085-7
    [3] XIAO Ziniu, LIU Hua, ZHANG De, 2012: Progress in Climate Prediction and Weather Forecast Operations in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 943-957.  doi: 10.1007/s00376-012-1194-9
    [4] Wenbo Xue, Hui Yu, Shengming TANG, Wei Huang, 2024: Relationships between Terrain Features and Forecasting Errors of Surface Wind Speeds in a Mesoscale Numerical Weather Prediction Model, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3087-5
    [5] Jiangjiang XIA, Haochen LI, Yanyan KANG, Chen YU, Lei JI, Lve WU, Xiao LOU, Guangxiang ZHU, Zaiwen Wang, Zhongwei YAN, Lizhi WANG, Jiang ZHU, Pingwen ZHANG, Min CHEN, Yingxin ZHANG, Lihao GAO, Jiarui HAN, 2020: Machine Learning−based Weather Support for the 2022 Winter Olympics, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 927-932.  doi: 10.1007/s00376-020-0043-5
    [6] Mu Mu, Duan Wansuo, Wang Jiacheng, 2002: The Predictability Problems in Numerical Weather and Climate Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 191-204.  doi: 10.1007/s00376-002-0016-x
    [7] Jianhua LU, 2021: Chen-Chao Koo and the Early Numerical Weather Prediction Experiments in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 707-716.  doi: 10.1007/s00376-021-0268-y
    [8] XUE Jishan, 2004: Progresses of Researches on Numerical Weather Prediction in China: 1999-2002, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 467-474.  doi: 10.1007/BF02915573
    [9] XUE Jishan, LIU Yan, 2007: Numerical Weather Prediction in China in the New Century ---Progress, Problems and Prospects, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1099-1108.  doi: 10.1007/s00376-007-1099-1
    [10] Liu Jinda, 1993: Improving Numerical Weather Prediction in Low Latitudes by Optimizing Diffusion Coefficients, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 345-352.  doi: 10.1007/BF02658140
    [11] MARZUKI, Hiroyuki HASHIGUCHI, Mutya VONNISA, HARMADI, Masaki KATSUMATA, 2018: Determination of Intraseasonal Variation of Precipitation Microphysics in the Southern Indian Ocean from Joss-Waldvogel Disdrometer Observation during the CINDY Field Campaign, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1415-1427.  doi: 10.1007/s00376-018-8026-5
    [12] Cao Hongxing, 1987: A TECHNIQUE FOR VERIFICATION OF WEATHER FORECAST AND CLIMATE SIMULATION WITH FUZZY SETS, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 363-374.  doi: 10.1007/BF02663606
    [13] Guifu ZHANG, Vivek N. MAHALE, Bryan J. PUTNAM, Youcun QI, Qing CAO, Andrew D. BYRD, Petar BUKOVCIC, Dusan S. ZRNIC, Jidong GAO, Ming XUE, Youngsun JUNG, Heather D. REEVES, Pamela L. HEINSELMAN, Alexander RYZHKOV, Robert D. PALMER, Pengfei ZHANG, Mark WEBER, Greg M. MCFARQUHAR, Berrien MOORE III, Yan ZHANG, Jian ZHANG, J. VIVEKANANDAN, Yasser AL-RASHID, Richard L. ICE, Daniel S. BERKOWITZ, Chong-chi TONG, Caleb FULTON, Richard J. DOVIAK, 2019: Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 571-588.  doi: 10.1007/s00376-019-8172-4
    [14] Michael B. RICHMAN, Lance M. LESLIE, Theodore B. TRAFALIS, Hicham MANSOURI, 2015: Data Selection Using Support Vector Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 277-286.  doi: 10.1007/s00376-014-4072-9
    [15] Xiangqian WU, Changyong CAO, 2006: Sensor Calibration in Support for NOAA’s Satellite Mission, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 80-90.  doi: 10.1007/s00376-006-0009-2
    [16] JIANG Yongqiang, WANG Yuan, HUANG Hong, 2012: A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1215-1226.  doi: 10.1007/s00376-012-1186-9
    [17] T. N. KRISHNAMURTI, A. D. SAGADEVAN, A. CHAKRABORTY, A. K. MISHRA, A. SIMON, 2009: Improving Multimodel Weather Forecast of Monsoon Rain Over China Using FSU Superensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 813-839.  doi: 10.1007/s00376-009-8162-z
    [18] Fuzhong WENG, Xinwen YU, Yihong DUAN, Jun YANG, Jianjie WANG, 2020: Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 131-136.  doi: 10.1007/s00376-019-9170-2
    [19] Hongqin ZHANG, Xiangjun TIAN, Wei CHENG, Lipeng JIANG, 2020: System of Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation for Numerical Weather Prediction (SNAP): System Formulation and Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1267-1284.  doi: 10.1007/s00376-020-9252-1
    [20] Sijia LI, Yuan WANG, Huiling YUAN, Jinjie SONG, Xin XU, 2016: Ensemble Mean Forecast Skill and Applications with the T213 Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1297-1305.  doi: 10.1007/s00376-016-6155-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2007
Manuscript revised: 10 July 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Real-Time Mesoscale Forecast Support During the CLAMS Field Campaign

  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081; Center for Atmospheric Sciences, Hampton University, Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia,Analytical Services $\&$ Materials Inc., Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia,Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia

Abstract: This paper reports the use of a specialized, mesoscale, numerical weather prediction (NWP) system and a satellite imaging and prediction system that were set up to support the CLAMS (Chesapeake Lighthouse and Aircraft Measurements for Satellites) field campaign during the summer of 2001. The primary objective of CLAMS was to validate satellite-based retrievals of aerosol properties and vertical profiles of the radiative flux, temperature and water vapor. Six research aircraft were deployed to make detailed coincident measurements of the atmosphere and ocean surface with the research satellites that orbited overhead. The mesoscale weather modeling system runs in real-time to provide high spatial and temporal resolution for forecasts that are delivered via the World Wide Web along with a variety of satellite imagery and satellite location predictions. This system is a multi-purpose modeling system capable of both data analysis/assimilation and multi-scale NWP ranging from cloud-scale to larger than regional scale. This is a three-dimensional, non-hydrostatic compressible model in a terrain-following coordinate. The model employs advanced numerical techniques and contains detailed interactive physical processes. The utility of the forecasting system is illustrated throughout the discussion on the impact of the surface-wind forecast on BRDF (Bidirectional Reflectance Distribution Function) and the description of the cloud/moisture forecast versus the aircraft measurement.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return