Advanced Search
Article Contents

Measurements of Nighttime Nitrate Radical Concentrations in the Atmosphere by Long-Path Differential Optical Absorption Spectroscopy


doi: 10.1007/s00376-007-0875-2

  • The long-path differential optical absorption spectroscopy (LP-DOAS) technique was developed to measure nighttime atmospheric nitrate radical (NO3) concentrations. An optimized retrieval method, resulting in a small residual structure and low detection limits, was developed to retrieve NO3. The time series of the NO3 concentration were collected from 17 to 24 March, 2006, where a nighttime average value of 15.8 ppt was observed. The interfering factors and errors are also discussed. These results indicate that the DOAS technique provides an essential tool for the quantification of NO3 concentration and in the study of its effects upon nighttime chemistry.
  • [1] HUANG Jianping, 2006: Analysis of Ice Water Path Retrieval Errors Over Tropical Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 165-180.  doi: 10.1007/s00376-006-0165-4
    [2] HUO Yanfeng, DUAN Minzheng, TIAN Wenshou, MIN Qilong, 2015: A Differential Optical Absorption Spectroscopy Method for X CO2 Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1119-1128.  doi: 10.1007/s00376-015-4213-9
    [3] REN Zhihua, LI Mingqin, 2007: Errors and Correction of Precipitation Measurements in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 449-458.  doi: 10.1007/s00376-007-0449-3
    [4] P. L. S. Rao, 2000: The Influence of Systematic Errors on the Asian Summer Monsoon Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 576-586.  doi: 10.1007/s00376-000-0021-x
    [5] CHEN Boyu, MU Mu, 2012: The Roles of Spatial Locations and Patterns of Initial Errors in the Uncertainties of Tropical Cyclone Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 63-78.  doi: 10.1007/s00376-011-0201-x
    [6] CHEN Bomin, JI Liren, YANG Peicai, ZHANG Daomin, 2003: Systematic Errors of Zonal-Mean Flow in Dynamical Monthly Prediction and Its Improvement, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 17-27.  doi: 10.1007/BF03342046
    [7] Rong FENG, Wansuo DUAN, 2018: Investigating the Initial Errors that Cause Predictability Barriers for Indian Ocean Dipole Events Using CMIP5 Model Outputs, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1305-1320.  doi: 10.1007/s00376-018-7214-7
    [8] Zhong Qing, Chen Jiatian, Sun Zuoling, 2002: Elimination of Computational Systematic Errors and Improvements of Weather and Climate System Models in Relation to Baroclinic Primitive Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1103-1112.  doi: 10.1007/s00376-002-0068-y
    [9] YU Liang, MU Mu, Yanshan YU, , 2014: Role of Parameter Errors in the Spring Predictability Barrier for ENSO Events in the Zebiak-Cane Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 647-656.  doi: 10.1007/s00376-013-3058-3
    [10] Wansuo DUAN, Xixi WEN, 2019: Errors in Current Velocity in the Low-latitude North Pacific: Results from the Regional Ocean Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 397-416.  doi: 10.1007/s00376-018-8140-4
    [11] Rong FENG, Wansuo DUAN, 2019: Indian Ocean Dipole-related Predictability Barriers Induced by Initial Errors in the Tropical Indian Ocean in a CGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 658-668.  doi: 10.1007/s00376-019-8224-9
    [12] Ling-Jiang TAO, Chuan GAO, Rong-Hua ZHANG, 2018: ENSO Predictions in an Intermediate Coupled Model Influenced by Removing Initial Condition Errors in Sensitive Areas: A Target Observation Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 853-867.  doi: 10.1007/s00376-017-7138-7
    [13] Jie FENG, Jianping LI, Jing ZHANG, Deqiang LIU, Ruiqiang DING, 2019: The Relationship between Deterministic and Ensemble Mean Forecast Errors Revealed by Global and Local Attractor Radii, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 271-278.  doi: 10.1007/s00376-018-8123-5
    [14] Lijun ZHAO, Yuan WANG, Chuanfeng ZHAO, Xiquan DONG, Yuk L. YUNG, 2022: Compensating Errors in Cloud Radiative and Physical Properties over the Southern Ocean in the CMIP6 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2156-2171.  doi: 10.1007/s00376-022-2036-z
    [15] Wenbo XUE, Hui YU, Shengming TANG, Wei HUANG, 2024: Relationships between Terrain Features and Forecasting Errors of Surface Wind Speeds in a Mesoscale Numerical Weather Prediction Model, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3087-5
    [16] XU Hui, DUAN Wansuo, 2008: What Kind of Initial Errors Cause the Severest Prediction Uncertainty of El Nino in Zebiak-Cane Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 577-584.  doi: 10.1007/s00376-008-0577-4
    [17] Kazutoshi SATO, Jun INOUE, Akira YAMAZAKI, Naohiko HIRASAWA, Konosuke SUGIURA, Kyohei YAMADA, 2020: Antarctic Radiosonde Observations Reduce Uncertainties and Errors in Reanalyses and Forecasts over the Southern Ocean: An Extreme Cyclone Case, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 431-440.  doi: 10.1007/s00376-019-8231-x
    [18] P.C.S. Devara, P. Ernest Raj, 1992: Atmospheric NO2 Concentration Measurements Using Differential Absorption Lidar Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 73-82.  doi: 10.1007/BF02656932
    [19] Qian ZHOU, Wansuo DUAN, Xu WANG, Xiang LI, Ziqing ZU, 2021: The Initial Errors in the Tropical Indian Ocean that Can Induce a Significant “Spring Predictability Barrier” for La Niña Events and Their Implication for Targeted Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1566-1579.  doi: 10.1007/s00376-021-0427-1
    [20] Feifan ZHOU, Munehiko YAMAGUCHI, Xiaohao QIN, 2016: Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones. Part I: Initial Uncertainties, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 841-851.  doi: 10.1007/s00376-016-5238-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2007
Manuscript revised: 10 September 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Measurements of Nighttime Nitrate Radical Concentrations in the Atmosphere by Long-Path Differential Optical Absorption Spectroscopy

  • 1. Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031

Abstract: The long-path differential optical absorption spectroscopy (LP-DOAS) technique was developed to measure nighttime atmospheric nitrate radical (NO3) concentrations. An optimized retrieval method, resulting in a small residual structure and low detection limits, was developed to retrieve NO3. The time series of the NO3 concentration were collected from 17 to 24 March, 2006, where a nighttime average value of 15.8 ppt was observed. The interfering factors and errors are also discussed. These results indicate that the DOAS technique provides an essential tool for the quantification of NO3 concentration and in the study of its effects upon nighttime chemistry.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return