Advanced Search
Article Contents

Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991


doi: 10.1007/s00376-007-0881-4

  • A P-sigma regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze River Valley during the mei-yu period of 1991. The simulation results showed that by considering the sub-grid scale topography scheme, one can significantly improve the performance of the model for simulating the rainfall distribution and intensity during these three heavy rainfall events, most especially the second and third. It was also discovered that the rainfall was mainly due to convective precipitation. The comparison between experiments, either with and without the sub-grid scale topography scheme, showed that the model using the scheme reproduced the convergence intensity and distribution at the 850 hPa level and the ascending motion and moisture convergence center located at 500 hPa over the Yangtze River valley. However, some deviations still exist in the simulation of the atmospheric moisture content, the convergence distribution and the moisture transportation route, which mainly result in lower simulated precipitation levels. Further analysis of the simulation results demonstrated that the sub-grid topography scheme modified the distribution of the surface energy budget components, especially at the south and southwest edges of the Tibetan Plateau, leading to the development and eastward propagation of the negative geopotential height difference and positive temperature-lapse rate difference at 700 hPa, which possibly led to an improved precipitation simulation over eastern China.
  • [1] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [2] Huang Ronghui, Wu Bingyi, Sung-Gil Hong, Jai-Ho Oh, 2001: Sensitivity of Numerical Simulations of the East Asian Summer Monsoon Rainfall and Circulation to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 23-41.  doi: 10.1007/s00376-001-0002-8
    [3] Jianjun LIU, Feimin ZHANG, Zhaoxia PU, 2017: Numerical Simulation of the Rapid Intensification of Hurricane Katrina (2005): Sensitivity to Boundary Layer Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 482-496.  doi: 10.1007/s00376-016-6209-5
    [4] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [5] Cheng Anning, Chen Wen, Huang Ronghui, 1998: The Sensitivity of Numerical Simulation of the East Asian Monsoon to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 204-220.  doi: 10.1007/s00376-998-0040-6
    [6] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [7] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [8] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [9] Liu Huaqiang, Qian Yongfu, 1999: Numerical Simulations of Intense Meiyu Rainfall in 1991 over the Changjiang and Huaihe River Valleys by a Regional Climate Model with p-б Incorporated Coordinate System, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 395-404.  doi: 10.1007/s00376-999-0018-z
    [10] PAN Yang, YU Rucong, LI Jian, XU Youping, 2008: A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 563-576.  doi: 10.1007/s00376-008-0563-x
    [11] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [12] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [13] Xie Zhenghui, Dai Yongjiu, Zeng Qingcun, 1999: An Unsaturated Soil Water Flow Problem and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 183-196.  doi: 10.1007/BF02973081
    [14] HUANG Yongjie, CUI Xiaopeng, 2015: Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 389-400.  doi: 10.1007/s00376-014-4066-7
    [15] LIU Juanjuan, WANG Bin, 2011: Rainfall Assimilation Using a New Four-Dimensional Variational Method: A Single-Point Observation Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 735-742.  doi: 10.1007/s00376-010-0061-9
    [16] PING Fan, GAO Shouting, WANG Huijun, 2003: An Improvement of the Mass Flux Convection Parameterization Scheme and its Sensitivity Tests for Seasonal Prediction over China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 978-990.  doi: 10.1007/BF02915521
    [17] Honglei ZHANG, Ming XUE, Hangfeng SHEN, Xiaofan LI, Guoqing ZHAI, 2024: Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System: Importance of Back-Building Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 847-863.  doi: 10.1007/s00376-023-3033-6
    [18] YU Ye, Xiaoming CAI, QIE Xiushu, 2007: Influence of Topography and Large-scale Forcing on the Occurrence of Katabatic Flow Jumps in Antarctica: Idealized Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 819-832.  doi: 10.1007/s00376-007-0819-x
    [19] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [20] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2007
Manuscript revised: 10 September 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing \zipcode{210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093

Abstract: A P-sigma regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze River Valley during the mei-yu period of 1991. The simulation results showed that by considering the sub-grid scale topography scheme, one can significantly improve the performance of the model for simulating the rainfall distribution and intensity during these three heavy rainfall events, most especially the second and third. It was also discovered that the rainfall was mainly due to convective precipitation. The comparison between experiments, either with and without the sub-grid scale topography scheme, showed that the model using the scheme reproduced the convergence intensity and distribution at the 850 hPa level and the ascending motion and moisture convergence center located at 500 hPa over the Yangtze River valley. However, some deviations still exist in the simulation of the atmospheric moisture content, the convergence distribution and the moisture transportation route, which mainly result in lower simulated precipitation levels. Further analysis of the simulation results demonstrated that the sub-grid topography scheme modified the distribution of the surface energy budget components, especially at the south and southwest edges of the Tibetan Plateau, leading to the development and eastward propagation of the negative geopotential height difference and positive temperature-lapse rate difference at 700 hPa, which possibly led to an improved precipitation simulation over eastern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return