Advanced Search
Article Contents

Development of a Model for Water and Heat Exchange Between the Atmosphere and a Water Body


doi: 10.1007/s00376-007-0927-7

  • A model for studying the heat and mass exchange between the atmosphere and a water body is developed, in which the phase change process of water freezing in winter and melting in summer and the function of the convective mixing process are taken into consideration. The model uses enthalpy rather than temperature as the predictive variable. It helps to set up governing equations more concisely, to deal with the phase change process more easily, and make the numerical scheme simpler. The model is verified by observed data from Lake Kinneret for a non-frozen lake in summer time, and Lake Lower Two Medicine for a frozen lake in winter time. Reasonably good agreements between the model simulations and observed data indicate that the model can serve as a component for a water body in a land surface model. In order to more efficiently apply the scheme in a climate system model, a sensitivity study of various division schemes with less layers in the vertical direction in the water body is conducted. The results of the study show that the division with around 10 vertical layers could produce a prediction accuracy that is comparable to the fine division with around 40 layers.
  • [1] Xinrong WU, Shaoqing ZHANG, Zhengyu LIU, 2016: Implementation of a One-Dimensional Enthalpy Sea-Ice Model in a Simple Pycnocline Prediction Model for Sea-Ice Data Assimilation Studies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 193-207.  doi: 10.1007/s00376-015-5099-2
    [2] Yang Xiaosong, Lin Zhaohui, Dai Yongjiu, Guo Yufu, 2001: Validation of IAP94 Land Surface Model over the Huaihe River Basin with HUBEX Field Experiment Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 139-154.  doi: 10.1007/s00376-001-0009-1
    [3] LI Qian, SUN Shufen, DAI Qiudan, 2009: The Numerical Scheme Development of a Simplified Frozen Soil Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 940-950.  doi: 10.1007/s00376-009-7174-z
    [4] CAO Lijuan, DONG Wenjie, XU Yinlong, ZHANG Yong, Michael SPARROW, 2007: Validating the Runoff from the PRECIS Model Using a Large-Scale Routing Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 855-862.  doi: 10.1007/s00376-007-0855-6
    [5] WEN Xinyu, ZHOU Tianjun, WANG Shaowu, WANG Bin, WAN Hui, LI Jian, 2007: Performance of a Reconfigured Atmospheric General Circulation Model at Low Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 712-728.  doi: 10.1007/s00376-007-0712-7
    [6] CHEN Feng, and XIE Zhenghui, 2013: An evaluation of RegCM3_CRES for regional climate modeling in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1187-1200.  doi: 10.1007/s00376-012-2114-8
    [7] Yu Rucong, Li Wei, Zhang Xuehong, LiuYimin, Yu Yongqiang, Liu Hailong, Zhou Tianjun, 2000: Climatic Features Related to Eastern China Summer Rainfalls in the NCAR CCM3, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 503-518.  doi: 10.1007/s00376-000-0014-9
    [8] Zhang Yu, Lu Shihua, 2002: Development and Validation of a Simple Frozen Soil Parameterization Scheme Used for Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 513-527.  doi: 10.1007/s00376-002-0083-z
    [9] SUN Lan, XUE Yongkang, 2004: Validation of SSiB Model over Grassland with CHeRES Field Experiment Data in 2001, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 547-556.  doi: 10.1007/BF02915722
    [10] Dai Yongjiu, Zeng Qingcun, 1997: A Land Surface Model (IAP94) for Climate Studies Part I: Formulation and Validation in Off-line Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 433-460.  doi: 10.1007/s00376-997-0063-4
    [11] HAN Xiao, ZHANG Meigen, ZHU Lingyun, and XU Liren, 2013: Model analysis of influences of aerosol mixing state upon its optical properties in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1201-1212.  doi: 10.1007/s00376-012-2150-4
    [12] ZHOU Zaixing, ZHENG Xunhua, XIE Baohua, HAN Shenghui, LIU Chunyan, 2010: A process-based model of N2O emission from a rice-winter wheat rotation agroecosystem: structure, validation and sensitivity, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 137-150.  doi: 10.1007/s00376-009-8191-7
    [13] Zihan YIN, Panxi DAI, Ji NIE, 2021: A Two-plume Convective Model for Precipitation Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 957-965.  doi: 10.1007/s00376-021-0404-8
    [14] Liao Dongxian, 1989: A Regional Spectral Nested Shallow Water Equation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 393-402.  doi: 10.1007/BF02659074
    [15] Xia Daqing, Xu Youping, 1998: The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part I: The Water-Bearing Numerical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 221-232.  doi: 10.1007/s00376-998-0041-5
    [16] Zhizhen XU, Jing CHEN, Mu MU, Guokun DAI, Yanan MA, 2022: A Nonlinear Representation of Model Uncertainty in a Convective-Scale Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1432-1450.  doi: 10.1007/s00376-022-1341-x
    [17] Xiaoqing WU, Xiaofan LI, 2008: A Review of Cloud-Resolving Model Studies of Convective Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 202-212.  doi: 10.1007/s00376-008-0202-6
    [18] Zihan YIN, Panxi DAI, Ji NIE, 2023: Erratum to: A Two-plume Convective Model for Precipitation Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 743-743.  doi: 10.1007/s00376-023-2019-8
    [19] Changyu ZHAO, Haishan CHEN, Shanlei SUN, 2018: Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 445-456.  doi: 10.1007/s00376-017-7006-5
    [20] XU Xiangde, MIAO Qiuju, WANG Jizhi, ZHANG Xuejin, 2003: The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 333-342.  doi: 10.1007/BF02690791

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2007
Manuscript revised: 10 September 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Development of a Model for Water and Heat Exchange Between the Atmosphere and a Water Body

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072,Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072,Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072

Abstract: A model for studying the heat and mass exchange between the atmosphere and a water body is developed, in which the phase change process of water freezing in winter and melting in summer and the function of the convective mixing process are taken into consideration. The model uses enthalpy rather than temperature as the predictive variable. It helps to set up governing equations more concisely, to deal with the phase change process more easily, and make the numerical scheme simpler. The model is verified by observed data from Lake Kinneret for a non-frozen lake in summer time, and Lake Lower Two Medicine for a frozen lake in winter time. Reasonably good agreements between the model simulations and observed data indicate that the model can serve as a component for a water body in a land surface model. In order to more efficiently apply the scheme in a climate system model, a sensitivity study of various division schemes with less layers in the vertical direction in the water body is conducted. The results of the study show that the division with around 10 vertical layers could produce a prediction accuracy that is comparable to the fine division with around 40 layers.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return