Advanced Search
Article Contents

Trends and Scales of Observed Soil Moisture Variations in China


doi: 10.1007/s00376-008-0043-3

  • A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981--1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1--3 months and increase with soil depth. Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers, cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200--600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation, whereas in the latter, the spatial scale is controlled by topography.
  • [1] Bo SUN, Huijun WANG, 2017: A Trend towards a Stable Warm and Windless State of the Surface Weather Conditions in Northern and Northeastern China during 1961-2014, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 713-726.  doi: 10.1007/s00376-017-6252-x
    [2] GUAN Xiaodan, HUANG Jianping, GUO Ni, BI Jianrong, WANG Guoyin, 2009: Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 692-700.  doi: 10.1007/s00376-009-8198-0
    [3] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.
    [4] Changyu ZHAO, Haishan CHEN, Shanlei SUN, 2018: Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 445-456.  doi: 10.1007/s00376-017-7006-5
    [5] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [6] ZHANG Shuwen, LI Deqin, QIU Chongjian, 2011: A Multimodel Ensemble-based Kalman Filter for the Retrieval of Soil Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 195-206.  doi: 10.1007/s00376-010-9200-6
    [7] LIU Huizhi, WANG Baomin, FU Congbin, 2008: Relationships Between Surface Albedo, Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu, Northeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 757-764.  doi: 10.1007/s00376-008-0757-2
    [8] Binghao JIA, Longhuan WANG, Yan WANG, Ruichao LI, Xin LUO, Jinbo XIE, Zhenghui XIE, Si CHEN, Peihua QIN, Lijuan LI, Kangjun CHEN, 2021: CAS-LSM Datasets for the CMIP6 Land Surface Snow and Soil Moisture Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 862-874.  doi: 10.1007/s00376-021-0293-x
    [9] ZHANG Jie, LIU Zhenyuan, CHEN Li, 2015: Reduced Soil Moisture Contributes to More Intense and More Frequent Heat Waves in Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1197-1207.  doi: 10.1007/s00376-014-4175-3
    [10] WU Lingyun, ZHANG Jingyong, 2015: The Relationship between Spring Soil Moisture and Summer Hot Extremes over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1660-1668.  doi: 10.1007/s00376-015-5003-0
    [11] DAN Li, JI Jinjun, LIU Huizhi, 2008: Use of a Land Surface Model to Evaluate the Observed Soil Moisture of Grassland at the Tongyu Reference Site, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1073-1084.  doi: 10.1007/s00376-008-1073-6
    [12] LI Mingxing, MA Zhuguo, 2010: Comparisons of Simulations of Soil Moisture Variations in the Yellow River Basin Driven by Various Atmospheric Forcing Data Sets, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1289-1302.  doi: 10.1007/s00376-010-9155-7
    [13] ZHANG Shuwen, LI Haorui, ZHANG Weidong, QIU Chongjian, LI Xin, 2005: Estimating the Soil Moisture Profile by Assimilating Near-Surface Observations with the Ensemble Kalman Filter (EnKF), ADVANCES IN ATMOSPHERIC SCIENCES, 22, 936-945.  doi: 10.1007/BF02918692
    [14] Yinshuo Dong, Haishan Chen, Xuan Dong, Wenjian Hua, Wenjun Zhang, 2024: Synergistic Impacts of Indian Ocean SST and Indo-China Peninsula Soil Moisture on the 2020 Record-breaking Meiyu, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3204-0
    [15] Zhiyan ZUO, Renhe ZHANG, 2016: Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 151-163.  doi: 10.1007/s00376-015-5024-8
    [16] GUO Weidong, WANG Huijun, 2003: A Case Study of the Improvement of Soil Moisture Initialization in IAP-PSSCA, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 845-848.  doi: 10.1007/BF02915411
    [17] Yinghan SANG, Hong-Li REN, Xueli SHI, Xiaofeng XU, Haishan CHEN, 2021: Improvement of Soil Moisture Simulation in Eurasia by the Beijing Climate Center Climate System Model from CMIP5 to CMIP6, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 237-252.  doi: 10.1007/s00376-020-0167-7
    [18] Chujie GAO, Gen LI, 2023: Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1632-1648.  doi: 10.1007/s00376-023-2361-x
    [19] SONG Yaoming, GUO Weidong, ZHANG Yaocun, 2009: Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 319-326.  doi: 10.1007/s00376-009-0319-2
    [20] Yizhe HAN, Dabang JIANG, Dong SI, Yaoming MA, Weiqiang MA, 2024: Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020: Role of Soil Moisture, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2363-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2008
Manuscript revised: 10 January 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Trends and Scales of Observed Soil Moisture Variations in China

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;National Climate Center, China Meteorological Administration, Beijing 100081;Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981--1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1--3 months and increase with soil depth. Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers, cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200--600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation, whereas in the latter, the spatial scale is controlled by topography.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return