Advanced Search
Article Contents

Description and Application of a Model for Simulating Regional Nitrogen Cycling and Calculating Nitrogen Flux


doi: 10.1007/s00376-008-0181-7

  • A regional nitrogen cycle model, named IAP-N, was designed for simulating regional nitrogen (N) cycling and calculating N fluxes flowing among cultivated soils, crops, and livestock, as well as human, atmospheric and other systems. The conceptual structure and calculation methods and procedures of this model are described in detail. All equations of the model are presented. In addition, definitions of all the involved variables and parameters are given. An application of the model in China at the national scale is presented. In this example, annual surpluses of consumed synthetic N fertilizer; emissions of nitrous oxide (N2O), ammonia (NH3) and nitrogen oxide (NOx); N loss from agricultural lands due to leaching and runoff; and sources and sinks of anthropogenic reactive N (Nr) were estimated for the period 1961--2004. The model estimates show that surpluses of N fertilizer started to occur in the mid 1990s and amounted to 5.7 Tg N yr-1 in the early 2000s. N2O emissions related to agriculture were estimated as 0.69 Tg N yr-1 in 2004, of which 58% was released directly from N added to agricultural soils. Total NH3 and NOx emissions in 2004 amounted to 4.7 and 4.9 Tg N yr-1, respectively. About 3.9 Tg N yr-1 of N was estimated to have flowed out of the cultivated soil layer in 2004, which accounted for 33% of applied synthetic N fertilizer. Anthropogenic Nr sources changed from 2.8 (1961) to 28.1 Tg N yr-1 (2004), while removal (sinks) changed from to 2.1 to 8.4 Tg N yr-1. The ratio of anthropogenic Nr sources to sinks was only 1.4 in 1961 but 3.3 in 2004. Further development of the IAP-N model is suggested to focus upon: (a) inter-comparison with other regional N models; (b) overcoming the limitations of the current model version, such as adaptation to other regions, high-resolution database, and so on; and (c) developing the capacity to estimate the safe threshold of anthropogenic Nr source to sink ratios.
  • [1] XU Yongfu, HUANG Yao, LI Yangchun, 2012: Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1027-1047.  doi: 10.1007/s00376-012-1206-9
    [2] Wang Shaobin, Su Weihan, Song Wenzhi, Zeng Jianghai, Zhang Yuming, 1993: Studies of Nitrous Oxide Emission from Farmlands in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 489-496.  doi: 10.1007/BF02656974
    [3] Ding Aiju, Wang Mingxing, 1996: Model for Methane Emission from Rice Fields and Its Application in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 159-168.  doi: 10.1007/BF02656859
    [4] Reshmita NATH, Debashis NATH, Qian LI, Wen CHEN, Xuefeng CUI, 2017: Impact of Drought on Agriculture in the Indo-Gangetic Plain, India, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 335-346.  doi: 10.1007/s00376-016-6102-2
    [5] JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong, 2015: Paleoclimate Modeling in China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 250-275.  doi: 10.1007/s00376-014-0002-0
    [6] LIU Chunyan, Jirko HOLST, Nicolas BRUGGEMANN, Klaus BUTTERBACH-BAHL, YAO Zhisheng, HAN Shenghui, HAN Xingguo, ZHENG Xunhua, 2008: Effects of Irrigation on Nitrous Oxide, Methane and Carbon Dioxide Fluxes in an Inner Mongolian Steppe, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 748-756.  doi: 10.1007/s00376-008-0748-3
    [7] GUO Xueliang, FU Danhong, LI Xingyu, HU Zhaoxia, LEI Henchi, XIAO Hui, HONG Yanchao, 2015: Advances in Cloud Physics and Weather Modification in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 230-249.  doi: 10.1007/s00376-014-0006-9
    [8] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [9] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [10] Gou Ji, Zheng Xunhua, Wang Mingxing, Li Changsheng, 1999: Modeling N2O Emissions from Agricultural Fields in Southeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 581-592.  doi: 10.1007/s00376-999-0033-0
    [11] Jingjing LIANG, Zongliang YANG, Peirong LIN, 2019: Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1171-1187.  doi: 10.1007/s00376-019-9016-y
    [12] Zhao Li, Zhao Sixiong, 1995: Numerical Experiments of Meiyu(Baiu) Rainfall by Quasi-Lagrangian Limited Area Model with Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 57-66.  doi: 10.1007/BF02661287
    [13] HAN Guijun, LI Wei, ZHANG Xuefeng, LI Dong, HE Zhongjie, WANG Xidong, WU Xinrong, YU Ting, MA Jirui, 2011: A Regional Ocean Reanalysis System for Coastal Waters of China and Adjacent Seas, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 682-690.  doi: 10.1007/s00376-010-9184-2
    [14] ZHU Renbin, SUN Liguang, YIN Xuebin, LIU Xiaodong, XING Guangxi, 2004: Summertime Surface N2O Concentration Observed on Fildes Peninsula Antarctica: Correlation with Total Atmospheric O3 and Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 204-210.  doi: 10.1007/BF02915706
    [15] WANG Yinghong, WANG Yuesi, LING Hong, 2010: A New Carrier Gas Type for Accurate Measurement of N$_{2}$O by GC-ECD, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1322-1330.  doi: 10.1007/s00376-010-9212-2
    [16] Ruth GEEN, Marianne PIETSCHNIG, Shubhi AGRAWAL, Dipanjan DEY, F. Hugo LAMBERT, Geoffrey K. VALLIS, 2023: The Relationship between Model Biases in East Asian Summer Monsoon Rainfall and Land Evaporation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2029-2042.  doi: 10.1007/s00376-023-2297-1
    [17] HE Jinhai, JU Jianhua, WEN Zhiping, L\"U Junmei, JIN Qihua, 2007: A Review of Recent Advances in Research on Asian Monsoon in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 972-992.  doi: 10.1007/s00376-007-0972-2
    [18] YUE Jin, HAN Shenghui, ZHENG Xunhua, 2012: Designing a Regional Nitrogen Cycle Module of Grassland for the IAP-N Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 320-332.  doi: 10.1007/s00376-011-0165-x
    [19] Yuan QIU, Jinming FENG, Zhongwei YAN, Jun WANG, 2022: High-resolution Projection Dataset of Agroclimatic Indicators over Central Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1734-1745.  doi: 10.1007/s00376-022-2008-3
    [20] Michael Brody, Maksim Kulikov, Sagynbek Orumbaev, Peter van Oevelen, 2024: The Global Energy and Water Exchanges Project in Central Asia; The Case for a Regional Hydroclimate Project, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3384-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2008
Manuscript revised: 10 March 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Description and Application of a Model for Simulating Regional Nitrogen Cycling and Calculating Nitrogen Flux

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A regional nitrogen cycle model, named IAP-N, was designed for simulating regional nitrogen (N) cycling and calculating N fluxes flowing among cultivated soils, crops, and livestock, as well as human, atmospheric and other systems. The conceptual structure and calculation methods and procedures of this model are described in detail. All equations of the model are presented. In addition, definitions of all the involved variables and parameters are given. An application of the model in China at the national scale is presented. In this example, annual surpluses of consumed synthetic N fertilizer; emissions of nitrous oxide (N2O), ammonia (NH3) and nitrogen oxide (NOx); N loss from agricultural lands due to leaching and runoff; and sources and sinks of anthropogenic reactive N (Nr) were estimated for the period 1961--2004. The model estimates show that surpluses of N fertilizer started to occur in the mid 1990s and amounted to 5.7 Tg N yr-1 in the early 2000s. N2O emissions related to agriculture were estimated as 0.69 Tg N yr-1 in 2004, of which 58% was released directly from N added to agricultural soils. Total NH3 and NOx emissions in 2004 amounted to 4.7 and 4.9 Tg N yr-1, respectively. About 3.9 Tg N yr-1 of N was estimated to have flowed out of the cultivated soil layer in 2004, which accounted for 33% of applied synthetic N fertilizer. Anthropogenic Nr sources changed from 2.8 (1961) to 28.1 Tg N yr-1 (2004), while removal (sinks) changed from to 2.1 to 8.4 Tg N yr-1. The ratio of anthropogenic Nr sources to sinks was only 1.4 in 1961 but 3.3 in 2004. Further development of the IAP-N model is suggested to focus upon: (a) inter-comparison with other regional N models; (b) overcoming the limitations of the current model version, such as adaptation to other regions, high-resolution database, and so on; and (c) developing the capacity to estimate the safe threshold of anthropogenic Nr source to sink ratios.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return