Advanced Search
Article Contents

ENSO Amplitude Change in Observation and Coupled Models


doi: 10.1007/s00376-008-0361-5

  • Observations show that the tropical El Nino-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.
  • [1] FANG Changfang*, WU Lixin, and ZHANG Xiang, 2014: The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 118-130.  doi: 10.1007/s00376-013-2260-7
    [2] Paxson K. Y. CHEUNG, Wen ZHOU, Dongxiao WANG, Marco Y. T. LEUNG, 2022: Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 67-79.  doi: 10.1007/s00376-021-1109-8
    [3] LIU Chengyan* and WANG Zhaomin, , 2014: On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 211-218.  doi: 10.1007/s00376-013-2323-9
    [4] YANG Jing, BAO Qing, WANG Xiaocong, 2013: Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 167-174.  doi: 10.1007/s00376-012-1260-3
    [5] YUAN Yuan, ZHOU Wen, YANG Hui, LI Chongyin, 2008: Warming in the Northwestern Indian Ocean Associated with the El Ni\~no Event, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 246-252.  doi: 10.1007/s00376-008-0246-7
    [6] Jingchao LONG, Suping ZHANG, Yang CHEN, Jingwu LIU, Geng HAN, 2016: Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific: Interannual Variations and Global Warming Effect, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 511-521.  doi: 10.1007/s00376-015-5097-4
    [7] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [8] Shuangmei MA, Congwen ZHU, Juan LIU, 2020: Combined Impacts of Warm Central Equatorial Pacific Sea Surface Temperatures and Anthropogenic Warming on the 2019 Severe Drought in East China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1149-1163.  doi: 10.1007/s00376-020-0077-8
    [9] Jun YING, Ping HUANG, Ronghui HUANG, 2016: Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 433-441.  doi: 10.1007/s00376-015-5184-6
    [10] LIN Pengfei, LIU Hailong, ZHANG Xuehong, 2007: Sensitivity of the Upper Ocean Temperature and Circulation in the Equatorial Pacific to Solar Radiation Penetration Due to Phytoplankton, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 765-780.  doi: 10.1007/s00376-007-0765-7
    [11] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9
    [12] YUAN Zhuojian, QIAN Yu-Kun, QI Jindian, WU Junjie, 2012: The Potential Impacts of Warmer-Continent-Related Lower-Layer Equatorial Westerly Wind on Tropical Cyclone Initiation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 333-343.  doi: 10.1007/s00376-011-1100-x
    [13] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [14] Jinping WANG, Xianyao CHEN, 2023: Arctic Sea Level Variability from Oceanic Reanalysis and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2362-2377.  doi: 10.1007/s00376-023-3004-y
    [15] P. P. BABURAJ, S. ABHILASH, K. MOHANKUMAR, A. K. SAHAI, 2020: On the Epochal Variability in the Frequency of Cyclones during the Pre-Onset and Onset Phases of the Monsoon over the North Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 634-651.  doi: 10.1007/s00376-020-9070-5
    [16] ZHANG Ying, WANG Huijun, SUN Jianqi, Helge DRANGE, 2010: Changes in the Tropical Cyclone Genesis Potential Index over the Western North Pacific in the SRES A2 Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1246-1258.  doi: 10.1007/s00376-010-9096-1
    [17] Xiaofei GAO, Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, He ZHANG, 2022: Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1285-1298.  doi: 10.1007/s00376-021-1138-3
    [18] WEI Xiaolin, LIU Qian, Ka Se LAM, WANG Tijian, 2012: Impact of Precursor Levels and Global Warming on Peak Ozone Concentration in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 635-645.  doi: 10.1007/s00376-011-1167-4
    [19] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [20] Ruosi ZHANG, Shang-Ping XIE, Lixiao XU, Qinyu LIU, 2016: Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 452-461.  doi: 10.1007/s00376-015-5113-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2008
Manuscript revised: 10 May 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

ENSO Amplitude Change in Observation and Coupled Models

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 10002 ; Graduate University of the Chinese Academy of Sciences, Beijing 10004;Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871

Abstract: Observations show that the tropical El Nino-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return