Advanced Search
Article Contents

A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall


doi: 10.1007/s00376-008-0563-x

  • Based on the observation data analysis and numerical simulation, the development of an eastward-moving vortex generated in Southwest China during the period 25--27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vorticity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vorticity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.
  • [1] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [2] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [3] Xiuping YAO, Qin ZHANG, Xiao ZHANG, 2020: Potential Vorticity Diagnostic Analysis on the Impact of the Easterlies Vortex on the Short-term Movement of the Subtropical Anticyclone over the Western Pacific in the Mei-yu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1019-1031.  doi: 10.1007/s00376-020-9271-y
    [4] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [5] HUANG Hong, JIANG Yongqiang, CHEN Zhongyi, LUO Jian, WANG Xuezhong, 2014: Effect of Tropical Cyclone Intensity and Instability on the Evolution of Spiral Bands, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1090-1100.  doi: 10.1007/s00376-014-3108-5
    [6] Daeun JEONG, Ki-Hong MIN, Gyuwon LEE, and Kyung-Eak KIM, 2014: A Case Study of Mesoscale Convective Band (MCB) Development and Evolution along a Quasi-stationary Front, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 901-915.  doi: 10.1007/s00376-013-3089-9
    [7] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [8] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [9] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [10] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [11] Jiwon Hwang, Dong-Hyun Cha, Donghyuck Yoon, Tae-Young Goo, Sueng-Pil Jung, 2024: Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3232-9
    [12] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [13] WANG Xiaokang, NI Yunqi, XU Wenhui, GU Chunli, QIU Xuexing, 2011: Water Cycle and Microphysical Processes Associated with a Mesoscale Convective Vortex System in the Dabie Mountain Area, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1405-1422.  doi: 10.1007/s00376-011-0089-5
    [14] Xie Zhenghui, Dai Yongjiu, Zeng Qingcun, 1999: An Unsaturated Soil Water Flow Problem and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 183-196.  doi: 10.1007/BF02973081
    [15] YU Zifeng, LIANG Xudong, YU Hui, Johnny C. L. CHAN, 2010: Mesoscale Vortex Generation and Merging Process: A Case Study Associated with a Post-Landfall Tropical Depression, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 356-370.  doi: 10.1007/s00376-009-8091-x
    [16] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [17] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [18] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [19] BI Yun, CHEN Yuejuan, ZHOU Renjun, YI Mingjian, DENG Shumei, 2011: Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 832-842.  doi: 10.1007/s00376-010-0047-7
    [20] Junhong Wang, Harold L. Cole, David J. Carlson, 2001: Water Vapor Variability in the Tropical Western Pacific from 20-year Radiosonde Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 752-766.

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2008
Manuscript revised: 10 July 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; Graduate University of Chinese Academy of Sciences, Beijing 100049;State Key Laboratory of Numerical Modeling for Atmospheric and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Numerical Modeling for Atmospheric and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Numerical Modeling for Atmospheric and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on the observation data analysis and numerical simulation, the development of an eastward-moving vortex generated in Southwest China during the period 25--27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vorticity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vorticity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return