Advanced Search
Article Contents

Diagnosing Ocean Tracer Transport from Sellafield and Dounreay by Equivalent Diffusion and Age


doi: 10.1007/s00376-008-0805-y

  • A simple approach for estimating the equivalent diffusion for diagnosing tracer transport is proposed. Two different expressions are derived; one is based directly on an analytical solution of the two-dimensional advection-diffusion equation, the other uses the variance of the tracer distribution. To illustrate some features of the equivalent diffusion and possible applications thereof, idealized releases of passive tracers from the nuclear fuel reprocessing plants at Sellafield in the Irish Sea and Dounreay on the northern coast of Scotland have been simulated with a regional isopycnic co-ordinate Ocean General Circulation Model. Both continuous and pulse releases are considered; the former being representative of the actual historical discharges from the reprocessing plants, the latter resembling an accidental scenario. Age tracers are included to calculate the mean time elapsed since the tracers left their source regions. It is found that in the Nordic Seas the age of tracers from Dounreay is approximately 2 years younger than the age from Sellafield. Although tracers from both sources eventually end up along the same transport routes, significant qualitative differences regarding the dispersion properties are found. It is argued that one single parameter, the equivalent horizontal diffusion, which is estimated to be in the range of 20--56 m$^2$ s$^{-1}$ from Sellafield and 170--485 m$^2$ s$^{-1}$ from Dounreay, determines these differences.
  • [1] L.G. Kachurin, 1990: Active-Passive Radiolocation of Dangerous Natural Phenomena, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 376-382.  doi: 10.1007/BF03179769
    [2] HU Yongyun, 2007: Probability Distribution Function of a Forced Passive Tracer in the Lower Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 163-180.  doi: 10.1007/s00376-007-0163-1
    [3] Zheng Yi, 2000: Study on Horizontal Relative Diffusion in the Troposphere and Lower Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 93-102.  doi: 10.1007/s00376-000-0046-1
    [4] Xun ZHU, 2003: Parameterization of the Non-Local Thermodynamic Equilibrium Source Function with Chemical Production by an Equivalent Two-Level Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 487-495.  doi: 10.1007/BF02915493
    [5] Yufan DAI, Qingqing LI, Xinhang LIU, Lijuan WANG, 2023: A Lagrangian Trajectory Analysis of Azimuthally Asymmetric Equivalent Potential Temperature in the Outer Core of Sheared Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1689-1706.  doi: 10.1007/s00376-023-2245-0
    [6] Yu Xing, Dai Jin, Jiang Weimei, Fan Peng, 2000: A Three-Dimensional Model of Transport and Diffusion of Seeding Agents within Stratus, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 617-635.  doi: 10.1007/s00376-000-0024-7
    [7] Xiangzhou SONG†, Rui Xin HUANG, Dexing WU, Fangli QIAO, Guansuo WANG, 2019: Geostrophic Spirals Generated by the Horizontal Diffusion of Vortex Stretching in the Yellow Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 219-230.  doi: 10.1007/s00376-018-8091-9
    [8] Hongxiong XU, Dajun ZHAO, 2021: Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1889-1904.  doi: 10.1007/s00376-021-1016-z
    [9] Liu Jinda, 1993: Improving Numerical Weather Prediction in Low Latitudes by Optimizing Diffusion Coefficients, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 345-352.  doi: 10.1007/BF02658140
    [10] Lei Xiaoen, 1985: EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 225-233.  doi: 10.1007/BF03179754
    [11] Hongxiong Xu, Dajun Zhao, 2023: Effect of the vertical diffusion of moisture in the planetary boundary layer on an idealized tropical cyclone, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 
    [12] Kaiqing YANG, Dabang JIANG, 2017: Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 497-508.  doi: 10.1007/s00376-016-6075-1
    [13] GUO Zhun, ZHOU Tianjun, 2013: Why Does FGOALS-gl Reproduce a Weak Medieval Warm Period But a Reasonable Little Ice Age and 20th Century Warming?, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1758-1770.  doi: 10.1007/s00376-013-2227-8
    [14] Mohamed F. YASSIN, 2009: Numerical Study of Flow and Gas Diffusion in the Near-Wake behind an Isolated Building, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1241-1252.  doi: 10.1007/s00376-009-8025-7
    [15] LI Yan, ZHU Jiang, WANG Hui, 2013: The Impact of Different Vertical Diffusion Schemes in a Three-Dimensional Oil Spill Model in the Bohai Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1569-1586.  doi: 10.1007/s00376-012-2201-x
    [16] Wang Mingkang, 1985: AN ANALYSIS OF THE FILTER DIFFUSION CHAMBER AND DROP FREEZING METHODS OF DETERMINING ICE NUCLEUS CONCENTRATIONS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 260-269.  doi: 10.1007/BF03179758
    [17] YU Xing, DAI Jin, LEI Hengchi, FAN Peng, 2005: Comparison Between Computer Simulation of Transport and Diffusion of Cloud Seeding Material Within Stratiform Cloud and the NOAA-14 Satellite Cloud Track, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 133-141.  doi: 10.1007/BF02930877

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2008
Manuscript revised: 10 September 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Diagnosing Ocean Tracer Transport from Sellafield and Dounreay by Equivalent Diffusion and Age

  • 1. Nansen Environmental and Remote Sensing Center, Bergen, Norway; Bjerknes Centre for Climate Research, Bergen, Norway;Nansen Environmental and Remote Sensing Center, Bergen, Norway; Bjerknes Centre for Climate Research, Bergen, Norway; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 10002;Nansen Environmental and Remote Sensing Center, Bergen, Norway; Bjerknes Centre for Climate Research, Bergen, Norway; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 1000;Centre for Systems Engineering and Applied Mechanics (CESAME), Louvain School of Engineering, Universite catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract: A simple approach for estimating the equivalent diffusion for diagnosing tracer transport is proposed. Two different expressions are derived; one is based directly on an analytical solution of the two-dimensional advection-diffusion equation, the other uses the variance of the tracer distribution. To illustrate some features of the equivalent diffusion and possible applications thereof, idealized releases of passive tracers from the nuclear fuel reprocessing plants at Sellafield in the Irish Sea and Dounreay on the northern coast of Scotland have been simulated with a regional isopycnic co-ordinate Ocean General Circulation Model. Both continuous and pulse releases are considered; the former being representative of the actual historical discharges from the reprocessing plants, the latter resembling an accidental scenario. Age tracers are included to calculate the mean time elapsed since the tracers left their source regions. It is found that in the Nordic Seas the age of tracers from Dounreay is approximately 2 years younger than the age from Sellafield. Although tracers from both sources eventually end up along the same transport routes, significant qualitative differences regarding the dispersion properties are found. It is argued that one single parameter, the equivalent horizontal diffusion, which is estimated to be in the range of 20--56 m$^2$ s$^{-1}$ from Sellafield and 170--485 m$^2$ s$^{-1}$ from Dounreay, determines these differences.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return