Advanced Search
Article Contents

Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation


doi: 10.1007/s00376-008-0946-z

  • The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4 2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4 2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4 2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.
  • [1] XIN Xiaoge, Zhaoxin LI, YU Rucong, ZHOU Tianjun, 2008: Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 555-562.  doi: 10.1007/s00376-008-0555-x
    [2] XU Ying, GAO Xuejie, F. GIORGI, 2009: Regional Variability of Climate Change Hot-spots in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 783-792.  doi: 10.1007/s00376-009-9034-2
    [3] LI Jiawei, HAN Zhiwei, 2012: A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 101-117.  doi: 10.1007/s00376-011-0234-1
    [4] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [5] Guo Yufu, Yu Yongqiang, Liu Xiying, Zhang Xuehong, 2001: Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 53-66.  doi: 10.1007/s00376-001-0004-6
    [6] Dabang JIANG, Dan HU, Zhiping TIAN, Xianmei LANG, 2020: Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1102-1118.  doi: 10.1007/s00376-020-2034-y
    [7] WANG Jia, ZHI Xiefei, and CHEN Yuwen, 2013: Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1129-1142.  doi: 10.1007/s00376-012-2182-9
    [8] WANG Xinmin, ZHAI Panmao, WANG Cuicui, 2009: Variations in Extratropical Cyclone Activity in Northern East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 471-479.  doi: 10.1007/s00376-009-0471-8
    [9] Wang Zifa, Huang Meiyuan, He Dongyang, Xu Huaying, Zhou Ling, 1996: Sulfur Distribution and Transport Studies in East Asia Using Eulerian Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 399-409.  doi: 10.1007/BF02656856
    [10] Fei WANG, Hua ZHANG, Qi CHEN, Min ZHAO, Ting YOU, 2020: Analysis of Short-term Cloud Feedback in East Asia Using Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1007-1018.  doi: 10.1007/s00376-020-9281-9
    [11] Zhenxi ZHANG, Wen ZHOU, Mark WENIG, Liangui YANG, 2017: Impact of Long-range Desert Dust Transport on Hydrometeor Formation over Coastal East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 101-115.  doi: 10.1007/s00376-016-6157-0
    [12] Sining LING, Riyu LU, Hao LIU, Yali YANG, 2023: Interannual Meridional Displacement of the Upper-Tropospheric Westerly Jet over Western East Asia in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1298-1308.  doi: 10.1007/s00376-022-2279-8
    [13] Xiaohan LI, Yi ZHANG, Yanluan LIN, Xindong PENG, Baiquan ZHOU, Panmao ZHAI, Jian LI, 2023: Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1225-1243.  doi: 10.1007/s00376-022-2225-9
    [14] LIU Qianxia, ZHANG Meigen, WANG Bin, 2005: Simulation of Tropospheric Ozone with MOZART-2:An Evaluation Study over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 585-594.  doi: 10.1007/BF02918490
    [15] Akio KITOH, Masahiro HOSAKA, Yukimasa ADACHI, Kenji KAMIGUCHI, 2005: Future Projections of Precipitation Characteristics in East Asia Simulated by the MRI CGCM2, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 467-478.  doi: 10.1007/BF02918481
    [16] Tae-Won PARK, Jee-Hoon JEONG, Chang-Hoi HO, Seong-Joong KIM, 2008: Characteristics of Atmospheric Circulation Associated with Cold Surge Occurrences in East Asia: A Case Study During 2005/06 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 791-804.  doi: 10.1007/s00376-008-0791-0
    [17] Samuel Takele KENEA, Young-Suk OH, Jae-Sang RHEE, Tae-Young GOO, Young-Hwa BYUN, Shanlan LI, Lev D. LABZOVSKII, Haeyoung LEE, Robert F. BANKS, 2019: Evaluation of Simulated CO2 Concentrations from the CarbonTracker-Asia Model Using In-situ Observations over East Asia for 2009-2013, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 603-613.  doi: 10.1007/s00376-019-8150-x
    [18] Gong-Wang Si, Kuranoshin Kato, Takao Takeda, 1995: The Early Summer Seasonal Change of Large-scale Circulation over East Asia and Its Relation to Change of The Frontal Features and Frontal Rainfall Environment During 1991 Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 151-176.  doi: 10.1007/BF02656829
    [19] Wei CHEN, Xiaowei HONG, Riyu LU, Aifen JIN, Shizhu JIN, Jae-Cheol NAM, Jin-Ho SHIN, Tae-Young GOO, Baek-Jo KIM, 2016: Variation in Summer Surface Air Temperature over Northeast Asia and Its Associated Circulation Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1-9.  doi: 10.1007/s00376-015-5056-0
    [20] Ruth GEEN, Marianne PIETSCHNIG, Shubhi AGRAWAL, Dipanjan DEY, F. Hugo LAMBERT, Geoffrey K. VALLIS, 2023: The Relationship between Model Biases in East Asian Summer Monsoon Rainfall and Land Evaporation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2029-2042.  doi: 10.1007/s00376-023-2297-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2008
Manuscript revised: 10 November 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

  • 1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332;Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708;Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore, MD 21228;School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332

Abstract: The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4 2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4 2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4 2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return