Advanced Search
Article Contents

Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea


doi: 10.1007/s00376-009-0211-0

  • Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004--2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The peak reflectivity itself was twice as strong and the relative location of the peak reflectivity within the bright band was higher at HN than at DG. Importantly, the variability of these values was much larger at HN than at DG. The key parameter to cause these differences is suggested to be the difference of the snow particle densities at the two sites, which is related to the degree of riming. Therefore, it is speculated that the cloud microphysical processes at HN may have varied significantly from un-rimed snow growth, producing low density snow particles, to the riming of higher density particles, while snow particle growth at DG was more consistently affected by the riming process, and therefore high density snow particles. Forced uplifting of cloudy air over the mountain area around DG might have resulted in an orographic supercooling effect that led to the enhanced riming of supercooled cloud drops.
  • [1] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [2] Hong WANG, Hengchi LEI, Jiefan YANG, 2017: Microphysical Processes of a Stratiform Precipitation Event over Eastern China: Analysis Using Micro Rain Radar data, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1472-1482.  doi: 10.1007/s00376-017-7005-6
    [3] HUANG Yongjie, CUI Xiaopeng, 2015: Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 389-400.  doi: 10.1007/s00376-014-4066-7
    [4] Ravidho RAMADHAN, MARZUKI, Mutya VONNISA, HARMADI, Hiroyuki HASHIGUCHI, Toyoshi SHIMOMAI, 2020: Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 832-846.  doi: 10.1007/s00376-020-9176-9
    [5] Jinfang YIN, Donghai WANG, Guoqing ZHAI, Hong WANG, Huanbin XU, Chongjian LIU, 2022: A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1451-1471.  doi: 10.1007/s00376-022-1402-1
    [6] Hepeng ZHENG, Yun ZHANG, Lifeng ZHANG, Hengchi LEI, Zuhang WU, 2021: Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 65-80.  doi: 10.1007/s00376-020-0179-3
    [7] REN Liliang, LI Chunhong, WANG Meirong, 2003: Application of Radar-Measured Rain Data in Hydrological Processes Modeling during the Intensified Observation Period of HUBEX, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 205-211.  doi: 10.1007/s00376-003-0005-8
    [8] ZONG Rong, LIU Liping, YIN Yan, 2013: Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1275-1286.  doi: 10.1007/s00376-013-2090-7
    [9] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [10] Wang Chunming, Wu Rongsheng, Wang Yuan, 2002: Interaction of Diabatic Frontogenesis and Moisture Processes in Cold-Frontal Rain-Band, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 544-561.  doi: 10.1007/s00376-002-0085-x
    [11] WANG Pengyun, YANG Jing, 2003: Observation and Numerical Simulation of Cloud Physical Processes Associated with Torrential Rain of the Meiyu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 77-96.  doi: 10.1007/BF03342052
    [12] Su-Bin OH, Yeon-Hee KIM, Ki-Hoon KIM, Chun-Ho CHO, Eunha LIM, 2016: Verification and Correction of Cloud Base and Top Height Retrievals from Ka-band Cloud Radar in Boseong, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 73-84.  doi: 10.1007/s00376-015-5058-y
    [13] Juan HUO, Yongheng BI, Daren Lü, Shu DUAN, 2019: Cloud Classification and Distribution of Cloud Types in Beijing Using Ka-Band Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, , 793-803.  doi: 10.1007/s00376-019-8272-1
    [14] Liping LIU, Jiafeng ZHENG, Jingya WU, 2017: A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 545-558.  doi: 10.1007/s00376-016-6044-8
    [15] Hao HUANG, Kun ZHAO, Johnny C. L. CHAN, Dongming HU, 2023: Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 874-886.  doi: 10.1007/s00376-022-1319-8
    [16] Xuexu WU, Minghuai WANG, Delong ZHAO, Daniel ROSENFELD, Yannian ZHU, Yuanmou DU, Wei ZHOU, Ping TIAN, Jiujiang SHENG, Fei WANG, Deping DING, 2022: The Microphysical Characteristics of Wintertime Cold Clouds in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2056-2070.  doi: 10.1007/s00376-022-1274-4
    [17] Zhao Bolin, Han Qingyuan, Zhu Yuanjing, 1985: A STUDY ON ABSORPTION CHARACTERISTICS OF THE ATMOSPHERIC WINDOW IN MICROWAVE BAND, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 28-34.  doi: 10.1007/BF03179734
    [18] Yuan WANG, Jonathan M. VOGEL, Yun LIN, Bowen PAN, Jiaxi HU, Yangang LIU, Xiquan DONG, Jonathan H. JIANG, Yuk L. YUNG, Renyi ZHANG, 2018: Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 234-247.  doi: 10.1007/s00376-017-7091-5
    [19] WU Chong, and LIU Liping, 2014: Comparison of the Observation Capability of an X-band Phased-array Radar with an X-band Doppler Radar and S-band Operational Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 814-824.  doi: 10.1007/s00376-013-3072-5
    [20] Chang Ki KIM, Seong Soo YUM, 2010: Local Meteorological and Synoptic Characteristics of Fogs Formed over Incheon International Airport in the West Coast of Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 761-776.  doi: 10.1007/s00376-009-9090-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2009
Manuscript revised: 10 March 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea

  • 1. Department of Atmospheric Sciences, Yonsei University, Korea; Global Environment System Research Laboratory NIMR/KMA, Korea;Global Environment System Research Laboratory NIMR/KMA, Korea;Department of Atmospheric Sciences, Yonsei University, Korea;Global Environment System Research Laboratory NIMR/KMA, Korea

Abstract: Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004--2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The peak reflectivity itself was twice as strong and the relative location of the peak reflectivity within the bright band was higher at HN than at DG. Importantly, the variability of these values was much larger at HN than at DG. The key parameter to cause these differences is suggested to be the difference of the snow particle densities at the two sites, which is related to the degree of riming. Therefore, it is speculated that the cloud microphysical processes at HN may have varied significantly from un-rimed snow growth, producing low density snow particles, to the riming of higher density particles, while snow particle growth at DG was more consistently affected by the riming process, and therefore high density snow particles. Forced uplifting of cloudy air over the mountain area around DG might have resulted in an orographic supercooling effect that led to the enhanced riming of supercooled cloud drops.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return