Advanced Search
Article Contents

Regional Distribution of Perceived Temperatures Estimated by the Human Heat Budget Model (the Klima-Michel Model) in South Korea


doi: 10.1007/s00376-009-0275-x

  • The regional distribution of perceived temperatures (PT) for 28 major weather stations in South Korea during the past 22 years (1983--2004) was investigated by employing a human heat budget model, the Klima-Michel model. The frequencies of a cold stress and a heat load by each region were compared. The sensitivity of PT in terms of the input of synoptic meteorological variables were successfully tested. Seogwipo in Jeju Island appears to be the most comfortable city in Korea. Busan also shows a high frequency in the comfortable PT range. The frequency of the thermal comfort in Seoul is similar to that of Daejeon with a relatively low frequency. In this study, inland cities like Daegu and Daejeon had very hot thermal sensations. Low frequencies of hot thermal sensations appeared in coastal cities (e.g., Busan, Incheon, and Seogwipo). Most of the 28 stations in Korea exhibited a comfort thermal sensation over 40% in its frequency, except for the mountainous regions. The frequency of a heat load is more frequent than that of a cold stress. There are no cities with very cold thermal sensations. In this study, we found the decreasing trend of mortality with an increasing PT. If the PT is over any critical temperature point, however, the mortality rate increases again. The mortality variation with the PT of a station seems to be associated with the latitudinal location of the station, implying that it results from a regional acclimation effect of inhabitants.
  • [1] ZHANG Xiaohui, GAO Zhiqiu, WEI Dongping, 2012: The Sensitivity of Ground Surface Temperature Prediction to Soil Thermal Properties Using the Simple Biosphere Model (SiB2)}, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 623-634.  doi: 10.1007/s00376-011-1162-9
    [2] Peter C. Chu, Chen Yuchun, Lu Shihua, 2001: Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 355-375.  doi: 10.1007/BF02919315
    [3] Guo Weidong, Sun Shufen, Qian Yongfu, 2002: Case Analyses and Numerical Simulation of Soil Thermal Impacts on Land Surface Energy Budget Based on an Off-Line Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 500-512.  doi: 10.1007/s00376-002-0082-0
    [4] HAN Ying, WU Rongsheng, FANG Juan, 2006: Shearing Wind Helicity and Thermal Wind Helicity, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 504-512.  doi: 10.1007/s00376-006-0504-5
    [5] Haochen LI, Chen YU, Jiangjiang XIA, Yingchun WANG, Jiang ZHU, Pingwen ZHANG, 2019: A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1156-1170.  doi: 10.1007/s00376-019-9023-z
    [6] Yueliang CHEN, Changxiang YAN, Jiang ZHU, 2018: Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1291-1304.  doi: 10.1007/s00376-018-7284-6
    [7] Lan Hongdi, Jiang Maoji, 1985: RESEARCH ON THE PHOTO-TEMPERATURE MODEL FOR THE DEVELOPMENTAL RATE OF RICE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 549-552.  doi: 10.1007/BF02678753
    [8] WANG Lu, and YANG Haijun, 2014: The Role of Atmospheric Teleconnection in the Subtropical Thermal Forcing on the Equatorial Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 985-994.  doi: 10.1007/s00376-013-3173-1
    [9] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part II: Thermal Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 225-236.  doi: 10.1007/BF02658096
    [10] Shi Guangyu, 1984: EFFECT OF ATMOSPHERIC OVERLAPPING BANDS AND THEIR TREATMENT ON THE CALCULATION OF THERMAL RADIATION, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 246-262.  doi: 10.1007/BF02678137
    [11] Zhang Daizhou, Qin Yu, 1995: QBO-like Oscillations Induced by Local Thermal Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 245-254.  doi: 10.1007/BF02656837
    [12] Deniz BOZKURT, David H. BROMWICH, Jorge CARRASCO, Keith M. HINES, Juan Carlos MAUREIRA, Roberto RONDANELLI, 2020: Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 477-493.  doi: 10.1007/s00376-020-9183-x
    [13] MA Xiaoyan, GUO Yufu, SHI Guangyu, YU Yongqiang, 2004: Numerical Simulation of Global Temperature Change during the 20th Century with the IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 227-235.  doi: 10.1007/BF02915709
    [14] Jianfeng WANG, Ricardo M. FONSECA, Kendall RUTLEDGE, Javier MARTÍN-TORRES, Jun YU, 2020: A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 57-74.  doi: 10.1007/s00376-019-9091-0
    [15] ZHANG Jie, Laurent LI, ZHOU Tianjun, and XIN Xiaoge, 2013: Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 699-712.  doi: 10.1007/s00376-013-2178-0
    [16] Xiang LI, Tiejun LING, Yunfei ZHANG, Qian ZHOU, 2018: A 31-year Global Diurnal Sea Surface Temperature Dataset Created by an Ocean Mixed-Layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1443-1454.  doi: 10.1007/s00376-018-8016-7
    [17] Alexey V. ELISEEV, Igor I. MOKHOV, Konstantin G. RUBINSTEIN, Maria S. GUSEVA, 2004: Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 837-847.  doi: 10.1007/BF02915586
    [18] Ya WANG, Gang HUANG, Baoxiang PAN, Pengfei LIN, Niklas BOERS, Weichen TAO, Yutong CHEN, BO LIU, Haijie LI, 2024: Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks: Climatology, Interannual Variability, and Extremes, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3288-6
    [19] ZHENG Fei, ZHU Jiang, Rong-Hua ZHANG, ZHOU Guangqing, 2006: Improved ENSO Forecasts by Assimilating Sea Surface Temperature Observations into an Intermediate Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 615-624.  doi: 10.1007/s00376-006-0615-z
    [20] Yan Shaojin, Peng Yongqing, Quo Guang, 1995: Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 225-232.  doi: 10.1007/BF02656835

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2009
Manuscript revised: 10 March 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Regional Distribution of Perceived Temperatures Estimated by the Human Heat Budget Model (the Klima-Michel Model) in South Korea

  • 1. National Institute of Meteorological Research, Korea Meteorological Administration, Seoul 156-720, Korea;National Institute of Meteorological Research, Korea Meteorological Administration, Seoul 156-720, Korea;National Institute of Meteorological Research, Korea Meteorological Administration, Seoul 156-720, Korea;National Institute of Meteorological Research, Korea Meteorological Administration, Seoul 156-720, Korea;Korea Global Atmosphere Watch Center, Korea Meteorological Administration, Chungnam 357-961, Korea

Abstract: The regional distribution of perceived temperatures (PT) for 28 major weather stations in South Korea during the past 22 years (1983--2004) was investigated by employing a human heat budget model, the Klima-Michel model. The frequencies of a cold stress and a heat load by each region were compared. The sensitivity of PT in terms of the input of synoptic meteorological variables were successfully tested. Seogwipo in Jeju Island appears to be the most comfortable city in Korea. Busan also shows a high frequency in the comfortable PT range. The frequency of the thermal comfort in Seoul is similar to that of Daejeon with a relatively low frequency. In this study, inland cities like Daegu and Daejeon had very hot thermal sensations. Low frequencies of hot thermal sensations appeared in coastal cities (e.g., Busan, Incheon, and Seogwipo). Most of the 28 stations in Korea exhibited a comfort thermal sensation over 40% in its frequency, except for the mountainous regions. The frequency of a heat load is more frequent than that of a cold stress. There are no cities with very cold thermal sensations. In this study, we found the decreasing trend of mortality with an increasing PT. If the PT is over any critical temperature point, however, the mortality rate increases again. The mortality variation with the PT of a station seems to be associated with the latitudinal location of the station, implying that it results from a regional acclimation effect of inhabitants.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return