Advanced Search
Article Contents

Ternary Forecast of Heavy Snowfall in the Honam Area, Korea


doi: 10.1007/s00376-009-0327-2

  • The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less than 50 mm, 1 for an advisory (50--150 mm), and 2 for a warning (more than 150 mm). For our study, the observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For statistical modeling and validation, the data set is divided into training data and validation data by cluster analysis. A multi-grade logistic regression model and neural networks are separately applied to generate the probabilities of three categories based on the model output statistic (MOS) method. Two models are estimated by the training data and tested by the validation data. Based on the estimated probabilities, three thresholds are chosen to generate ternary forecasts. The results are summarized in 3×3 contingency tables and the results of the three-grade logistic regression model are compared to those of the neural networks model. According to the model training and model validation results, the estimated three-grade logistic regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.
  • [1] Keon Tae SOHN, Sun Min PARK, 2008: Guidance on the Choice of Threshold for Binary Forecast Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 83-88.  doi: 10.1007/s00376-008-0083-8
    [2] Haochen LI, Chen YU, Jiangjiang XIA, Yingchun WANG, Jiang ZHU, Pingwen ZHANG, 2019: A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1156-1170.  doi: 10.1007/s00376-019-9023-z
    [3] Xiaofei LI, Qinghong ZHANG, Huiwen XUE, 2017: The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-moment Microphysics Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1106-1120.  doi: 10.1007/s00376-017-6237-9
    [4] Ying LI, Dajun ZHAO, 2022: Climatology of Tropical Cyclone Extreme Rainfall over China from 1960 to 2019, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 320-332.  doi: 10.1007/s00376-021-1080-4
    [5] H. Kurtulus OZCAN, Erdem BILGILI, Ulku SAHIN, O. Nuri UCAN, Cuma BAYAT, 2007: Modeling of Trophospheric Ozone Concentrations Using Genetically Trained Multi-Level Cellular Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 907-914.  doi: 10.1007/s00376-007-0907-y
    [6] Xiaodan Wu, Cao Hongxing, Andrew Flitman, Wei Fengying, Feng Guolin, 2001: Forecasting Monsoon Precipitation Using Artificial Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 950-958.  doi: 10.1007/s00376-997-0014-0
    [7] XIAO Cunying, HU Xiong, 2010: Applying Artificial Neural Networks to Modeling the Middle Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 883-890.  doi: 10.1007/s00376-009-9019-1
    [8] WEN Lijuan, Nidhi NAGABHATLA, Lü Shihua, Shih-Yu WANG, 2013: Impact of Rain Snow Threshold Temperature on Snow Depth Simulation in Land Surface and Regional Atmospheric Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1449-1460.  doi: 10.1007/s00376-012-2192-7
    [9] Linye SONG, Wansuo DUAN, Yun LI, Jiangyu MAO, 2016: A Timescale Decomposed Threshold Regression Downscaling Approach to Forecasting South China Early Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1071-7084.  doi: 10.1007/s00376-016-5251-7
    [10] John ABBOT, Jennifer MAROHASY, 2012: Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 717-730.  doi: 10.1007/s00376-012-1259-9
    [11] YAO Zhigang, CHEN Hongbin, LIN Longfu, 2005: Retrieving Atmospheric Temperature Profiles from AMSU-A Data with Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 606-616.  doi: 10.1007/BF02918492
    [12] Temesgen Gebremariam ASFAW, Jing-Jia LUO, 2024: Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 449-464.  doi: 10.1007/s00376-023-3029-2
    [13] Yongqiang LIU, 2005: Land Breeze and Thermals: A Scale Threshold to Distinguish Their Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 889-902.  doi: 10.1007/BF02918688
    [14] Shi Jiuen, Zhou Qinfang, Xiang Jingtian, 1986: AN APPLICATION OF THE THRESHOLD AUTOREGRESSION PROCEDURE TO CLIMATE ANALYSIS AND FORECASTING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 134-138.  doi: 10.1007/BF02680052
    [15] Mengmeng SONG, Dazhi YANG, Sebastian LERCH, Xiang’ao XIA, Gokhan Mert YAGLI, Jamie M. BRIGHT, Yanbo SHEN, Bai LIU, Xingli LIU, Martin János MAYER, 2024: Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3184-5
    [16] FENG Yerong, David H. KITZMILLER, 2006: A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 405-414.  doi: 10.1007/s00376-006-0405-7
    [17] Yan Shaojin, Peng Yongqing, Quo Guang, 1995: Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 225-232.  doi: 10.1007/BF02656835
    [18] Xu Jianjun, 1994: Statistical Regression Analysis of Response of Northern Mid and Upper Tropospheric Circulation to Winter Eurasian Snow Cover Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 415-420.  doi: 10.1007/BF02658161
    [19] Lei Bai, Pumeng Lyu, Tao Tang, Fenghua Ling, Jing-Jia Luo, Niklas Boers, Wanli Ouyang, 2024: ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3316-6
    [20] Keyue ZHANG, Juan LI, Zhiwei ZHU, Tim LI, 2021: Implications from Subseasonal Prediction Skills of the Prolonged Heavy Snow Event over Southern China in Early 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1873-1888.  doi: 10.1007/s00376-021-0402-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2009
Manuscript revised: 10 March 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Ternary Forecast of Heavy Snowfall in the Honam Area, Korea

  • 1. Department of Statistics, Pusan National University, Busan 609-735, Korea;Division of Management Information Science, Dong-A University, Busan 604-714, Korea;Department of Statistics, Pusan National University, Busan 609-735, Korea

Abstract: The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less than 50 mm, 1 for an advisory (50--150 mm), and 2 for a warning (more than 150 mm). For our study, the observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For statistical modeling and validation, the data set is divided into training data and validation data by cluster analysis. A multi-grade logistic regression model and neural networks are separately applied to generate the probabilities of three categories based on the model output statistic (MOS) method. Two models are estimated by the training data and tested by the validation data. Based on the estimated probabilities, three thresholds are chosen to generate ternary forecasts. The results are summarized in 3×3 contingency tables and the results of the three-grade logistic regression model are compared to those of the neural networks model. According to the model training and model validation results, the estimated three-grade logistic regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return