Advanced Search
Article Contents

Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions


doi: 10.1007/s00376-009-8001-2

  • In this paper, the online weather research and forecasting and chemistry (WRF-Chem) model is used to explore the impacts of urban expansion on regional weather conditions and its implication on surface ozone concentrations over the Pearl River Delta(PRD) and Yangtze River Delta(YRD) regions. Two scenarios of urban maps are used in the WRF-Chem to represent the early 1990s (pre-urbanization) and the current urban distribution in the PRD and the YRD. Month-long simulation results using the above land-use scenarios for March 2001 show that urbanization increases both the day- and night-time 2-m temperatures by about 0.6oC and 1.4oC, respectively. Daytime reduction in the wind speed by about 3.0 m s-1 is larger than that for the nighttime (0.5 to 2 m s-1). The daytime increase in the PBL height (> 200 m) is also larger than the nighttime (50--100 m). The meteorological conditions modified by urbanization lead to detectable ozone-concentration changes in the PRD and the YRD. Urbanization increases the nighttime surface-ozone concentrations by about 4.7%--8.5% and by about 2.9%--4.2% for the daytime. In addition to modifying individual meteorological variables, urbanization also enhances the convergence zones, especially in the PRD. More importantly, urbanization has different effects on the surface ozone for the PRD and the YRD, presumably due to their urbanization characteristics and geographical locations. Even though the PRD has a smaller increase in the surface temperature than the YRD, it has (a) weaker surface wind speed, (b) smaller increase in PBL heights, and (c) stronger convergence zones. The latter three factors outweighed the temperature increase and resulted in a larger ozone enhancement in the PRD than the YRD.
  • [1] Liang ZHANG, Bin ZHU, Jinhui GAO, Hanqing KANG, 2017: Impact of Taihu Lake on City Ozone in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 226-234.  doi: 10.1007/s00376-016-6099-6
    [2] Siyu CHEN, Dan ZHAO, Jianping HUANG, Jiaqi HE, Yu CHEN, Junyan CHEN, Hongru BI, Gaotong LOU, Shikang DU, Yue ZHANG, Fan YANG, 2023: Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1549-1557.  doi: 10.1007/s00376-023-3062-1
    [3] Tang Youhua, Miao Manqian, 1998: Numerical Studies on Urban Heat Island Associated with Urbanization in Yangtze Delta Region, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 393-403.  doi: 10.1007/s00376-998-0009-5
    [4] HAN Zuoqiang, YAN Zhongwei*, LI Zhen, LIU Weidong, and WANG Yingchun, 2014: Impact of Urbanization on Low-Temperature Precipitation in Beijing during 19602008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 48-56.  doi: 10.1007/s00376-013-2211-3
    [5] Chaoqun MA, Tijian WANG, Zengliang ZANG, Zhijin LI, 2018: Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 813-825.  doi: 10.1007/s00376-017-7179-y
    [6] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [7] Philip JONES, 2016: The Reliability of Global and Hemispheric Surface Temperature Records, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 269-282.  doi: 10.1007/s00376-015-5194-4
    [8] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [9] LI Zhen, YAN Zhongwei, TU Kai, WU Hongyi, 2015: Changes of Precipitation and Extremes and the Possible Effect of Urbanization in the Beijing Metropolitan Region during 1960-2012 Based on Homogenized Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1173-1185.  doi: 10.1007/s00376-015-4257-x
    [10] Ping LIANG, Yihui DING, 2017: The Long-term Variation of Extreme Heavy Precipitation and Its Link to Urbanization Effects in Shanghai during 1916-2014, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 321-334.  doi: 10.1007/s00376-016-6120-0
    [11] Yun QIAN, TC CHAKRABORTY, Jianfeng LI, Dan LI, Cenlin HE, Chandan SARANGI, Fei CHEN, Xuchao YANG, L. Ruby LEUNG, 2022: Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 819-860.  doi: 10.1007/s00376-021-1371-9
    [12] Yali LUO, Jiahua ZHANG, Miao YU, Xudong LIANG, Rudi XIA, Yanyu GAO, Xiaoyu GAO, Jinfang YIN, 2023: On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 393-409.  doi: 10.1007/s00376-022-2048-8
    [13] Prakash TIWARI, 2008: Land Use Changes in Himalaya and Their Impacts on Environment, Society and Economy: A Study of the Lake Region in Kumaon Himalaya, India, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1029-1042.  doi: 10.1007/s00376-008-1029-x
    [14] WEI Xiaolin, LIU Qian, Ka Se LAM, WANG Tijian, 2012: Impact of Precursor Levels and Global Warming on Peak Ozone Concentration in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 635-645.  doi: 10.1007/s00376-011-1167-4
    [15] HE Yuting, JIA Gensuo, HU Yonghong, and ZHOU Zijiang, 2013: Detecting urban warming signals in climate records, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1143-1153.  doi: 10.1007/s00376-012-2135-3
    [16] Xiaojuan LIU, Guangjin TIAN, Jinming FENG, Bingran MA, Jun WANG, Lingqiang KONG, 2018: Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 723-736.  doi: 10.1007/s00376-017-7137-8
    [17] Qinghong ZHANG, Rumeng LI, Juanzhen SUN, Feng LU, Jun XU, Fan ZHANG, 2023: A Review of Research on the Record-Breaking Precipitation Event in Henan Province, China, July 2021, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1485-1500.  doi: 10.1007/s00376-023-2360-y
    [18] LI Zhen, YAN Zhongwei, TU Kai, LIU Weidong, WANG Yingchun, 2011: Changes in Wind Speed and Extremes in Beijing during 1960--2008 Based on Homogenized Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 408-420.  doi: 10.1007/s00376-010-0018-z
    [19] Junlin AN, Huan LV, Min XUE, Zefeng ZHANG, Bo HU, Junxiu WANG, Bin ZHU, 2021: Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1153-1164.  doi: 10.1007/s00376-021-0367-9
    [20] Jingjiao PU, Honghui XU, Bo YAO, Yan YU, Yujun JIANG, Qianli MA, Liqu CHEN, 2020: Estimate of Hydrofluorocarbon Emissions for 2012–16 in the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 576-585.  doi: 10.1007/s00376-020-9242-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2009
Manuscript revised: 10 September 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions

  • 1. School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275,National Center for Atmospheric Research, Boulder, CO 80305, USA,School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,National Center for Atmospheric Research, Boulder, CO 80305, USA,National Center for Atmospheric Research, Boulder, CO 80305, USA,National Center for Atmospheric Research, Boulder, CO 80305, USA

Abstract: In this paper, the online weather research and forecasting and chemistry (WRF-Chem) model is used to explore the impacts of urban expansion on regional weather conditions and its implication on surface ozone concentrations over the Pearl River Delta(PRD) and Yangtze River Delta(YRD) regions. Two scenarios of urban maps are used in the WRF-Chem to represent the early 1990s (pre-urbanization) and the current urban distribution in the PRD and the YRD. Month-long simulation results using the above land-use scenarios for March 2001 show that urbanization increases both the day- and night-time 2-m temperatures by about 0.6oC and 1.4oC, respectively. Daytime reduction in the wind speed by about 3.0 m s-1 is larger than that for the nighttime (0.5 to 2 m s-1). The daytime increase in the PBL height (> 200 m) is also larger than the nighttime (50--100 m). The meteorological conditions modified by urbanization lead to detectable ozone-concentration changes in the PRD and the YRD. Urbanization increases the nighttime surface-ozone concentrations by about 4.7%--8.5% and by about 2.9%--4.2% for the daytime. In addition to modifying individual meteorological variables, urbanization also enhances the convergence zones, especially in the PRD. More importantly, urbanization has different effects on the surface ozone for the PRD and the YRD, presumably due to their urbanization characteristics and geographical locations. Even though the PRD has a smaller increase in the surface temperature than the YRD, it has (a) weaker surface wind speed, (b) smaller increase in PBL heights, and (c) stronger convergence zones. The latter three factors outweighed the temperature increase and resulted in a larger ozone enhancement in the PRD than the YRD.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return