Advanced Search
Article Contents

Application of a Recursive Filter to a Three-Dimensional Variational Ocean Data Assimilation System


doi: 10.1007/s00376-009-8112-9

  • In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter (RF) algorithm. The first advantage of OVALS2 is that memory storage can be substantially reduced in practice because it implicitly computes the background error covariance matrix; the second advantage is that there is no inversion of the background error covariance by preconditioning the control variable. For comparing the effectiveness between OVALS2 and OVALS, a set of experiments was implemented by assimilating expendable bathythermograph (XBT) and ARGO data into the Tropical Pacific circulation model. The results show that the efficiency of OVALS2 is much higher than that of OVALS. The computational time and the computer storage in the assimilation process were reduced by 83% and 77%, respectively. Additionally, the corresponding results produced by the RF are almost as good as those obtained by OVALS. These results prove that OVALS2 is suitable for operational numerical oceanic forecasting.
  • [1] Tao SUN, Yaodeng CHEN, Deming MENG, Haiqin CHEN, 2021: Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 831-844.  doi: 10.1007/s00376-021-0271-3
    [2] YAN Changxiang, ZHU Jiang, XIE Jiping, 2015: An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1460-1472.  doi: 10.1007/s00376-015-4121-z
    [3] FU Weiwei, ZHOU Guangqing, WANG Huijun, 2004: Ocean Data Assimilation with Background Error Covariance Derived from OGCM Outputs, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 181-192.  doi: 10.1007/BF02915704
    [4] LIU Juanjuan, WANG Bin, WANG Shudong, 2010: The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1303-1310.  doi: 10.1007/s00376-010-9067-6
    [5] ZHENG Xiaogu, WU Guocan, ZHANG Shupeng, LIANG Xiao, DAI Yongjiu, LI Yong, , 2013: Using Analysis State to Construct a Forecast Error Covariance Matrix in Ensemble Kalman Filter Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1303-1312.  doi: 10.1007/s00376-012-2133-5
    [6] Xiaogu ZHENG, 2009: An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 154-160.  doi: 10.1007/s00376-009-0154-5
    [7] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [8] Seung-Woo LEE, Dong-Kyou LEE, 2011: Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 758-774.  doi: 10.1007/s00376-010-0145-6
    [9] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [10] Runhua YANG, Jing GUO, Lars Peter RIISH?JGAARD, 2006: Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 33-44.  doi: 10.1007/s00376-006-0004-7
    [11] LIU Juan, WANG Bin, LIU Hailong, YU Yongqiang, 2008: A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 680-691.  doi: 10.1007/s00376-008-0680-6
    [12] Bohua Huang, James L. Kinter III, Paul S. Schopf, 2002: Ocean Data Assimilation Using Intermittent Analyses and Continuous Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 965-992.  doi: 10.1007/s00376-002-0059-z
    [13] Kefeng ZHU, Ming XUE, Yujie PAN, Ming HU, Stanley G. BENJAMIN, Stephen S. WEYGANDT, Haidao LIN, 2019: The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1308-1326.  doi: 10.1007/s00376-019-9011-3
    [14] WAN Liying, ZHU Jiang, WANG Hui, YAN Changxiang, Laurent BERTINO, 2009: A ``Dressed" Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1042-1052.  doi: 10.1007/s00376-009-7208-6
    [15] CUI Limei, SUN Jianhua, QI Linlin, LEI Ting, 2011: Application of ATOVS Radiance-Bias Correction to Typhoon Track Prediction with Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 178-186.  doi: 10.1007/s00376-010-9145-9
    [16] Jian YUE, Zhiyong MENG, Cheng-Ku YU, Lin-Wen CHENG, 2017: Impact of Coastal Radar Observability on the Forecast of the Track and Rainfall of Typhoon Morakot (2009) Using WRF-based Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 66-78.  doi: 10.1007/s00376-016-6028-8
    [17] Hongqin ZHANG, Xiangjun TIAN, Wei CHENG, Lipeng JIANG, 2020: System of Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation for Numerical Weather Prediction (SNAP): System Formulation and Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1267-1284.  doi: 10.1007/s00376-020-9252-1
    [18] BAI Yulong, LI Xin, and HUANG Chunlin, 2013: Handling error propagation in sequential data assimilation using an evolutionary strategy, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1096-1105.  doi: 10.1007/s00376-012-2115-7
    [19] Jie HE, Xulin MA, Xuyang GE, Juanjuan LIU, Wei CHENG, Man-Yau CHAN, Ziniu XIAO, 2021: Variational Quality Control of Non-Gaussian Innovations in the GRAPES m3DVAR System: Mass Field Evaluation of Assimilation Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1510-1524.  doi: 10.1007/s00376-021-0336-3
    [20] Xingchao CHEN, Kun ZHAO, Juanzhen SUN, Bowen ZHOU, Wen-Chau LEE, 2016: Assimilating Surface Observations in a Four-Dimensional Variational Doppler Radar Data Assimilation System to Improve the Analysis and Forecast of a Squall Line Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1106-1119.  doi: 10.1007/s00376-016-5290-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2010
Manuscript revised: 10 March 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Application of a Recursive Filter to a Three-Dimensional Variational Ocean Data Assimilation System

  • 1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of the Chinese Academy of Sciences, Beijing 100049,International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter (RF) algorithm. The first advantage of OVALS2 is that memory storage can be substantially reduced in practice because it implicitly computes the background error covariance matrix; the second advantage is that there is no inversion of the background error covariance by preconditioning the control variable. For comparing the effectiveness between OVALS2 and OVALS, a set of experiments was implemented by assimilating expendable bathythermograph (XBT) and ARGO data into the Tropical Pacific circulation model. The results show that the efficiency of OVALS2 is much higher than that of OVALS. The computational time and the computer storage in the assimilation process were reduced by 83% and 77%, respectively. Additionally, the corresponding results produced by the RF are almost as good as those obtained by OVALS. These results prove that OVALS2 is suitable for operational numerical oceanic forecasting.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return