Advanced Search
Article Contents

A Modeling Study of Diurnal Rainfall Variations during the 21-Day Period of TOGA COARE


doi: 10.1007/s00376-009-8123-6

  • The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.
  • [1] WANG Donghai, Xiaofan LI, Wei-Kuo TAO, 2010: Responses of Vertical Structures in Convective and Stratiform Regions to Large-Scale Forcing during the Landfall of Severe Tropical Storm Bilis (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 33-46.  doi: 10.1007/s00376-009-8139-y
    [2] YUAN Weihua, 2013: Diurnal Cycles of Precipitation over Subtropical China in IPCC AR5 AMIP Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1679-1694.  doi: 10.1007/s00376-013-2250-9
    [3] Jae-Young BYON, Gyu-Ho LIM, 2005: Diurnal Variation of Tropical Convection during TOGA COARE IOP, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 685-702.  doi: 10.1007/BF02918712
    [4] Changhai LIU, 2005: A Numerical Investigation of a Slow-Moving Convective Line in a Weakly Sheared Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 625-639.  doi: 10.1007/BF02918706
    [5] Han QIN, Ji NIE, Zhiyong MENG, 2024: A Tri-mode of Mock-Walker Cells, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 671-679.  doi: 10.1007/s00376-023-3032-7
    [6] Jinghua CHEN, Xiaoqing WU, Chunsong LU, Yan YIN, 2022: Seasonal and Diurnal Variations of Cloud Systems over the Eastern Tibetan Plateau and East China: A Cloud-resolving Model Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1034-1049.  doi: 10.1007/s00376-021-0391-9
    [7] GAO Wenhua, SUI Chung-Hsiung, 2013: A Modeling Analysis of Rainfall and Water Cycle by the Cloud-resolving WRF Model over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1695-1711.  doi: 10.1007/s00376-013-2288-8
    [8] YUE Caijun, SHOU Shaowen, Xiaofan LI, 2009: Water Vapor, Cloud, and Surface Rainfall Budgets Associated with the Landfall of Typhoon Krosa (2007): A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1198-1208.  doi: 10.1007/s00376-009-8135-2
    [9] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [10] Shaowu BAO, Lian XIE, Sethu RAMAN, 2004: A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 708-716.  doi: 10.1007/BF02916368
    [11] FU Danhong, GUO Xueliang, 2006: A Cloud-resolving Study on the Role of Cumulus Merger in MCS with Heavy Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 857-868.  doi: 10.1007/s00376-006-0857-9
    [12] Xiaoqing WU, Xiaofan LI, 2008: A Review of Cloud-Resolving Model Studies of Convective Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 202-212.  doi: 10.1007/s00376-008-0202-6
    [13] GAO Shouting, Xiaofan LI, 2008: Impacts of Initial Conditions on Cloud-Resolving Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 737-747.  doi: 10.1007/s00376-008-0737-6
    [14] J.M. Pathan, 1994: Diurnal Variation of Southwest Monsoon Rainfall at Indian Stations, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 111-120.  doi: 10.1007/BF02657000
    [15] Xinyong SHEN, Wenyan HUANG, Chunyan GUO, Xiaocen JIANG, 2016: Precipitation Responses to Radiative Effects of Ice Clouds: A Cloud-Resolving Modeling Study of a Pre-Summer Torrential Precipitation Event, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1137-1142.  doi: 10.1007/s00376-016-5218-8
    [16] Liu Liping, Feng Jinming, Chu Rongzhong, Zhou Yunjun, K. Ueno, 2002: The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 365-378.  doi: 10.1007/s00376-002-0028-6
    [17] Ruiyao CHEN, Ralf BENNARTZ, 2021: Rainfall Algorithms Using Oceanic Satellite Observations from MWHS-2, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1367-1378.  doi: 10.1007/s00376-020-0258-5
    [18] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [19] GE Xuyang, MA Yue, ZHOU Shunwu, Tim LI, 2014: Impacts of the Diurnal Cycle of Radiation on Tropical Cyclone Intensification and Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1377-1385.  doi: 10.1007/s00376-014-4060-0
    [20] ZHANG Liping, WU Lixin, YU Lisan, 2011: Oceanic Origin of A Recent La Nina-Like Trend in the Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1109-1117.  doi: 10.1007/s00376-010-0129-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2009
Manuscript revised: 10 September 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Modeling Study of Diurnal Rainfall Variations during the 21-Day Period of TOGA COARE

  • 1. Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Joint Center for Satellite Data Assimilation and NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland, USA

Abstract: The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return