Advanced Search
Article Contents

The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales


doi: 10.1007/s00376-009-8144-1

  • The relationship between the boreal winter (December, January, February) Aleutian Low (AL) and the simultaneous Australian summer monsoon (ASM) is explored in this study. A significant correlation is found between the North Pacific index (NPI) and ASM index, the bulk of which is attributed to the significant correlation after late 1970s. Significant differences in precipitation and outgoing long-wave radiation between typical negative and positive NPI years appear over the ASM area. A regression analysis of the circulation pattern against the NPI during the three months is performed separately. We propose that the NPI is related with the ASM circulation possibly through the changes in the upper level westerly jet. In a typical negative NPI (strong Aleutian Low) year, the jet is greatly reinforced and the anomalous anticyclonic circulation to the south is thus excited, from which the easterly wind anomalies flowing into the ASM region emanate. Further, strong sinking motion over the northern entrance region of the jet is enhanced, and the local Hadley circulation anomaly between the ASM region and the coast of East Asia is strengthened. In this way, anomalous upward motion over the ASM area can thus be strengthened, and the convective activity intensified. Then the monsoon rainfall over ASM area is increased. An ``asymmetric' connection between AL and the monsoon is found in this study.
  • [1] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [2] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [3] Wu Renguang, Chen Lieting, 1995: Interannual Fluctuations of Surface Air Temperature over North America and Its Relationship to the North Pacific SST Anomaly, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 20-28.  doi: 10.1007/BF02661284
    [4] Guanghui ZHOU, Rong-Hua ZHANG, 2022: Structure and Evolution of Decadal Spiciness Variability in the North Pacific during 2004–20, Revealed from Argo Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 953-966.  doi: 10.1007/s00376-021-1358-6
    [5] LI Chongyin, XIAN Peng, 2003: Atmospheric Anomalies Related to Interdecadal Variability of SST in the North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 859-874.  doi: 10.1007/BF02915510
    [6] Tao WANG, Qiang FU, Wenshou TIAN, Hongwen LIU, Yifeng PENG, Fei XIE, Hongying TIAN, Jiali LUO, 2023: The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2262-2278.  doi: 10.1007/s00376-022-2033-2
    [7] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [8] Qian Weihong, Zhang Henian, Zhu Yafen, Dong-Kyou Lee, 2001: lnterannual and lnterdecadal Variability of East Asian Acas and Their Impact on Temperature of China in Winter Season for the Last Century, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 511-523.  doi: 10.1007/s00376-001-0041-1
    [9] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [10] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [11] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [12] Hai ZHI, Rong-Hua ZHANG, Pengfei LIN, Peng YU, 2019: Interannual Salinity Variability in the Tropical Pacific in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 378-396.  doi: 10.1007/s00376-018-7309-1
    [13] Wu Aiming, Ni Yunqi, 1997: The Influence of Tibetan Plateau on the Interannual Variability of Atmospheric Circulation over Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 69-80.  doi: 10.1007/s00376-997-0045-6
    [14] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [15] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [16] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [17] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [18] Hai ZHI, Rong-Hua ZHANG, Fei ZHENG, Pengfei LIN, Lanning WANG, Peng YU, 2016: Assessment of Interannual Sea Surface Salinity Variability and Its Effects on the Barrier Layer in the Equatorial Pacific Using BNU-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 339-351.  doi: 10.1007/s00376-015-5163-y
    [19] Wang Huijun, 2000: The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 31-47.  doi: 10.1007/s00376-000-0041-6
    [20] Xingyan ZHOU, Riyu LU, Guanghua CHEN, Liang WU, 2018: Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 507-517.  doi: 10.1007/s00376-017-7143-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2010
Manuscript revised: 10 January 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales

  • 1. Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Sciences, Beijing 100049, Climate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing 100029,Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Climate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing 100029

Abstract: The relationship between the boreal winter (December, January, February) Aleutian Low (AL) and the simultaneous Australian summer monsoon (ASM) is explored in this study. A significant correlation is found between the North Pacific index (NPI) and ASM index, the bulk of which is attributed to the significant correlation after late 1970s. Significant differences in precipitation and outgoing long-wave radiation between typical negative and positive NPI years appear over the ASM area. A regression analysis of the circulation pattern against the NPI during the three months is performed separately. We propose that the NPI is related with the ASM circulation possibly through the changes in the upper level westerly jet. In a typical negative NPI (strong Aleutian Low) year, the jet is greatly reinforced and the anomalous anticyclonic circulation to the south is thus excited, from which the easterly wind anomalies flowing into the ASM region emanate. Further, strong sinking motion over the northern entrance region of the jet is enhanced, and the local Hadley circulation anomaly between the ASM region and the coast of East Asia is strengthened. In this way, anomalous upward motion over the ASM area can thus be strengthened, and the convective activity intensified. Then the monsoon rainfall over ASM area is increased. An ``asymmetric' connection between AL and the monsoon is found in this study.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return