Advanced Search
Article Contents

Direct Climatic Effect of Dust Aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3)


doi: 10.1007/s00376-009-8170-z

  • Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is -0.45 W m-2 in the solar spectrum and +0.09 W m-2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of -1.76 W m-2 and longwave forcing of +0.31 W m-2. As a result, dust aerosol causes the absorption of 1.1 W m-2 in the atmosphere. The RF of dust aerosol is predicted to lead to a surface cooling of 0.5 K over the Sahara Desert and Arabian Peninsula. In the meantime, the upper troposphere is predicted to become warmer because of the absorption by dust. These changes in temperature lead to a more stable atmosphere, which results in increases in surface humidity. The upward sensible and latent heat fluxes at the surface are reduced, largely balancing the surface energy loss caused by the backscattering and absorption of dust aerosol. Precipitation is predicted to decrease moderately on a global scale.
  • [1] WANG Hong, SHI Guangyu, LI Shuyan, LI Wei, WANG Biao, HUANG Yanbin, 2006: The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 431-441.  doi: 10.1007/s00376-006-0431-5
    [2] ZHANG Hua, WANG Zhili, GUO Pinwen, WANG Zaizhi, 2009: A Modeling Study of the Effects of Direct Radiative Forcing Due to Carbonaceous Aerosol on the Climate in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 57-66.  doi: 10.1007/s00376-009-0057-5
    [3] Xiaoyan WU, Jinyuan XIN, Wenyu ZHANG, Chongshui GONG, Yining MA, Yongjing MA, Tianxue WEN, Zirui LIU, Shili TIAN, Yuesi WANG, Fangkun WU, 2020: Optical, Radiative and Chemical Characteristics of Aerosol in Changsha City, Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1310-1322.  doi: 10.1007/s00376-020-0076-9
    [4] Boru MAI, Xuejiao DENG, Zhanqing LI, Jianjun LIU, Xiang'ao XIA, Huizheng CHE, Xia LIU, Fei LI, Yu ZOU, Maureen CRIBB, 2018: Aerosol Optical Properties and Radiative Impacts in the Pearl River Delta Region of China during the Dry Season, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 195-208.  doi: 10.1007/s00376-017-7092-4
    [5] SUN Zhian, WANG Xiaoyun, ZENG Xianning, 2006: Radiative Forcing of SO2 and NOx: A Case Study in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 317-322.  doi: 10.1007/s00376-006-0317-6
    [6] WANG Zhili, ZHANG Hua, SHEN Xueshun, 2011: Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1336-1344.  doi: 10.1007/s00376-011-0117-5
    [7] ZHANG Hua, ZHANG Ruoyu, and SHI Guangyu, 2013: An updated estimation of radiative forcing due to CO2 and its effect on global surface temperature change, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1017-1024.  doi: 10.1007/s00376-012-2204-7
    [8] Hui XU, Jianping GUO, Jian LI, Lin LIU, Tianmeng CHEN, Xiaoran GUO, Yanmin LYU, Ding WANG, Yi HAN, Qi CHEN, Yong ZHANG, 2021: The Significant Role of Radiosonde-measured Cloud-base Height in the Estimation of Cloud Radiative Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1552-1565.  doi: 10.1007/s00376-021-0431-5
    [9] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024
    [10] SHAO Longyi, LI Weijun, XIAO Zhenghui, SUN Zhenquan, 2008: The Mineralogy and Possible Sources of Spring Dust Particles over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 395-403.  doi: 10.1007/s00376-008-0395-8
    [11] LIU Yuzhi, SHI Guangyu, XIE Yongkun, 2013: Impact of Dust Aerosol on Glacial-Interglacial Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1725-1731.  doi: 10.1007/s00376-013-2289-7
    [12] Kevin HAMILTON, 2006: High Resolution Global Modeling of the Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 842-856.  doi: 10.1007/s00376-006-0842-3
    [13] Siyu CHEN, Dan ZHAO, Jianping HUANG, Jiaqi HE, Yu CHEN, Junyan CHEN, Hongru BI, Gaotong LOU, Shikang DU, Yue ZHANG, Fan YANG, 2023: Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1549-1557.  doi: 10.1007/s00376-023-3062-1
    [14] Hu Rongming, Serge Planton, Michel Déque, Pascal Marquet, Alain Braun, 2001: Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1103-1120.  doi: 10.1007/s00376-001-0026-0
    [15] FENG Qian, CUI Songxue, ZHAO Wei, 2015: Effect of Particle Shape on Dust Shortwave Direct Radiative Forcing Calculations Based on MODIS Observations for a Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1266-1276.  doi: 10.1007/s00376-015-4235-3
    [16] LI Jiandong, Zhian SUN, LIU Yimin, Jiangnan LI, Wei-Chyung WANG, WU Guoxiong, 2012: A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1185-1199.  doi: 10.1007/s00376-012-1257-y
    [17] Sun-Hee SHIN, Kyung-Ja HA, 2009: Implementation of Turbulent Mixing over a Stratocumulus-Topped Boundary Layer and Its Impact in a GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 995-1004.  doi: 10.1007/s00376-009-8145-0
    [18] Zeng Qingcun, Yuan Chongguang, Li Xu, Zhang Ronghua, Yang Fanglin, Zhang Banglin, Lu Peisheng, Bi Xunqiang, Wang Huijun, 1997: Seasonal and Extraseasonal Predictions of Summer Monsoon Precipitation by Gcms, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 163-176.  doi: 10.1007/s00376-997-0017-x
    [19] Yongjing MA, Jinyuan XIN, Yining MA, Lingbin KONG, Kequan ZHANG, Wenyu ZHANG, Yuesi WANG, Xiuqin WANG, Yongfeng ZHU, 2017: Optical Properties and Source Analysis of Aerosols over a Desert Area in Dunhuang, Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1017-1026.  doi: 10.1007/s00376-016-6224-6
    [20] ZHANG Renjian, FU Congbin, HAN Zhiwei, ZHU Chongshu, 2008: Characteristics of Elemental Composition of PM2.5 in the Spring Period at Tongyu in the Semi-arid Region of Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 922-931.  doi: 10.1007/s00376-008-0922-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2010
Manuscript revised: 10 March 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Direct Climatic Effect of Dust Aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3)

  • 1. Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, Nansen-Zhu International Research Center (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of the Chinese Academy of Sciences, Beijing 100049,Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, Nansen-Zhu International Research Center (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029,Nansen-Zhu International Research Center (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is -0.45 W m-2 in the solar spectrum and +0.09 W m-2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of -1.76 W m-2 and longwave forcing of +0.31 W m-2. As a result, dust aerosol causes the absorption of 1.1 W m-2 in the atmosphere. The RF of dust aerosol is predicted to lead to a surface cooling of 0.5 K over the Sahara Desert and Arabian Peninsula. In the meantime, the upper troposphere is predicted to become warmer because of the absorption by dust. These changes in temperature lead to a more stable atmosphere, which results in increases in surface humidity. The upward sensible and latent heat fluxes at the surface are reduced, largely balancing the surface energy loss caused by the backscattering and absorption of dust aerosol. Precipitation is predicted to decrease moderately on a global scale.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return