Advanced Search
Article Contents

A process-based model of N2O emission from a rice-winter wheat rotation agroecosystem: structure, validation and sensitivity


doi: 10.1007/s00376-009-8191-7

  • In this study, in order to numerically simulate daily nitrous oxide (N2O) emission from a rice-winter wheat rotation cropping system, we developed a process-based site model (referred to as IAP-N-GAS) tracking the movement and transformation of several forms of nitrogen in the agroecosystem, which is affected by climate, soil, crop growth and management practices. The simulation of daily N2O fluxes, along with key daily environmental variables, was validated with three-year observations conducted in East China. The validation demonstrated that the model simulated daily solar radiation, soil temperature and moisture well, and it almost exactly captured the dynamics and magnitude of accumulated rice above-ground biomass and mineral nitrogen in the soil. The simulated daily N2O emissions over all three years investigated were generally in good agreement with field observations. In particular, the peak N2O emissions induced by fertilizations, rainfall events or mid-season drainages, were well simulated. The model simulation also closely represented the inter-annual variation in N2O emission. These validations imply that the model has the capability to capture the general characteristics of N2O emission from a typical rice-wheat rotation agroecosystem. Sensitivity analyses revealed that the simulated N2O emission is most sensitive to the fertilizer application rate and the soil organic matter content, but it is much less sensitive to variations in the soil pH and texture, temperature, precipitation and crop residue incorporation rate under local conditions.
  • [1] ZOU Jianwen, HUANG Yao, ZONG Lianggang, ZHENG Xunhua, WANG Yuesi, 2004: Carbon Dioxide, Methane, and Nitrous Oxide Emissions from a Rice-Wheat Rotation as Affected by Crop Residue Incorporation and Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 691-698.  doi: 10.1007/BF02916366
    [2] XIE Baohua, ZHOU Zaixing, ZHENG Xunhua, ZHANG Wen, ZHU Jianguo, 2010: Modeling Methane Emissions from Paddy Rice Fields under Elevated Atmospheric Carbon Dioxide Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 100-114.  doi: 10.1007/s00376-009-8178-4
    [3] WANG Qiang, ZHOU Weidong*, WANG Dongxiao, and DONG Danpeng, 2014: Ocean Model Open Boundary Conditions with Volume, Heat and Salinity Conservation Constraints, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 188-196.  doi: 10.1007/s00376-013-2269-y
    [4] Yun QIAN, Teppei J. YASUNARI, Sarah J. DOHERTY, Mark G. FLANNER, William K. M. LAU, MING Jing, Hailong WANG, Mo WANG, Stephen G. WARREN, Rudong ZHANG, 2015: Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 64-91.  doi: 10.1007/s00376-014-0010-0
    [5] XIAO Cunying, HU Xiong, 2010: Applying Artificial Neural Networks to Modeling the Middle Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 883-890.  doi: 10.1007/s00376-009-9019-1
    [6] REN Liliang, LI Chunhong, WANG Meirong, 2003: Application of Radar-Measured Rain Data in Hydrological Processes Modeling during the Intensified Observation Period of HUBEX, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 205-211.  doi: 10.1007/s00376-003-0005-8
    [7] Wang Shaowu, Cai Jingning, Mu Qiaozhen, Xie Zhihui, Zhu Jinhong, Gong Daoyi, 2002: Modeling and Diagnostic Studies on the Variations of the Subtropical High over the Western Pacific from 1880 to 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1148-1152.  doi: 10.1007/s00376-002-0072-2
    [8] Gou Ji, Zheng Xunhua, Wang Mingxing, Li Changsheng, 1999: Modeling N2O Emissions from Agricultural Fields in Southeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 581-592.  doi: 10.1007/s00376-999-0033-0
    [9] Weniqan JIANG, Yong Li, Siqi LI, Meihui Wang, Bo Wang, Ji LIU, Jianlin Shen, Xunhua Zheng, 2024: Refining the factors affecting N2O emissions from upland soils with or without N fertilizer application at a global scale, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3234-7
    [10] ZHOU Libo, ZOU Han, GAO Yongqi, 2006: Middle-High Latitude N2O Distributions Related to the Arctic Vortex Breakup, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 215-223.  doi: 10.1007/s00376-006-0215-y
    [11] ZHU Renbin, SUN Liguang, YIN Xuebin, LIU Xiaodong, XING Guangxi, 2004: Summertime Surface N2O Concentration Observed on Fildes Peninsula Antarctica: Correlation with Total Atmospheric O3 and Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 204-210.  doi: 10.1007/BF02915706
    [12] CHEN Chen, LI Dan, GAO Zhiqiu, Jianwu TANG, GUO Xiaofeng, WANG Linlin, WAN Bingcheng, 2015: Seasonal and Interannual Variations of Carbon Exchange over a Rice-Wheat Rotation System on the North China Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1365-1380.  doi: 10.1007/s00376-015-4253-1
    [13] WANG Yuesi, WANG Yinghong, 2003: Quick Measurement of CH4, CO2 and N2O Emissions from a Short-Plant Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 842-844.  doi: 10.1007/BF02915410
    [14] WANG Yinghong, WANG Yuesi, LING Hong, 2010: A New Carrier Gas Type for Accurate Measurement of N$_{2}$O by GC-ECD, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1322-1330.  doi: 10.1007/s00376-010-9212-2
    [15] Wang Gengchen, Kong Qinxin, 1984: AN EXPERIMENTAL STUDY ON ABSORPTION PROPERTIES OF NO, N0_2, NH_3, CO_2 AND H_2O BY USING LINE-TUNABLE CO LASER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 112-127.  doi: 10.1007/BF03187622
    [16] BIAN Jianchun, YANG Peicai, 2005: Interdecadal Variations of Phase Delays Between Two Ni(n)o Indices at Different Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 122-125.  doi: 10.1007/BF02930875
    [17] JIANG Changsheng, WANG Yuesi, ZHENG Xunhua, ZHU Bo, HUANG Yao, HAO Qingju, 2006: Methane and Nitrous Oxide Emissions from Three Paddy Rice Based Cultivation Systems in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 415-424.  doi: 10.1007/s00376-006-0415-5
    [18] Sarbari Ghosh, Utpal Kumar De, 1997: A Comparative Study of the Atmospheric Layers below First Lifting Condensation Level for Instantaneous Pre-Monsoon Thunderstorm Occurrence at Agartala (23o30’N, 91o15’E) and Ranchi (23o14’N, 85o14’E) of India, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 93-102.  doi: 10.1007/s00376-997-0048-3
    [19] YUE Jin, HAN Shenghui, ZHENG Xunhua, 2012: Designing a Regional Nitrogen Cycle Module of Grassland for the IAP-N Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 320-332.  doi: 10.1007/s00376-011-0165-x
    [20] Zhao Bolin, Zhu Yuanjing, Zhang Chengxiang, Zhen Jinming, Zhang WenJan, 1993: Meteorological Satellite TIROS-N TOVS Remote Sensing of Atmospheric Property and Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 387-392.  doi: 10.1007/BF02656963

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2010
Manuscript revised: 10 January 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A process-based model of N2O emission from a rice-winter wheat rotation agroecosystem: structure, validation and sensitivity

  • 1. The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this study, in order to numerically simulate daily nitrous oxide (N2O) emission from a rice-winter wheat rotation cropping system, we developed a process-based site model (referred to as IAP-N-GAS) tracking the movement and transformation of several forms of nitrogen in the agroecosystem, which is affected by climate, soil, crop growth and management practices. The simulation of daily N2O fluxes, along with key daily environmental variables, was validated with three-year observations conducted in East China. The validation demonstrated that the model simulated daily solar radiation, soil temperature and moisture well, and it almost exactly captured the dynamics and magnitude of accumulated rice above-ground biomass and mineral nitrogen in the soil. The simulated daily N2O emissions over all three years investigated were generally in good agreement with field observations. In particular, the peak N2O emissions induced by fertilizations, rainfall events or mid-season drainages, were well simulated. The model simulation also closely represented the inter-annual variation in N2O emission. These validations imply that the model has the capability to capture the general characteristics of N2O emission from a typical rice-wheat rotation agroecosystem. Sensitivity analyses revealed that the simulated N2O emission is most sensitive to the fertilizer application rate and the soil organic matter content, but it is much less sensitive to variations in the soil pH and texture, temperature, precipitation and crop residue incorporation rate under local conditions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return