Advanced Search
Article Contents

Diurnal Variability of Precipitation Depth Over the Tibetan Plateau and its Surrounding Regions


doi: 10.1007/s00376-009-8193-5

  • The diurnal variability of precipitation depth over the Tibetan Plateau and its surrounding regions is investigated using nine years of Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements. The Tibetan Plateau, the plains area, and the East China Sea are selected as the focus regions in this study. The average precipitation depths (PD) are about 4.6 km, 5.8 km, and 5.6 km, while convective (stratiform) PDs are about 6.6 (4.5) km, 7.5 (5.7) km, and 6.0 (5.6) km over the plateau, the plains, and the ocean region, respectively. Results demonstrate a prominent PD diurnal cycle, and its diurnal phase is generally a few hours behind the surface precipitation. The spatial variation of the PD diurnal magnitude is weaker near the coastal areas than that of surface precipitation. The height of the PD diurnal peak is around 6--7 km for convective systems and 5--6 km for stratifrom systems. The dominant afternoon diurnal peak for convective PD and the flat diurnal peak for stratiform PD over the Tibetan Plateau indicate that solar diurnal forcing is the key mechanism of the PD diurnal cycle over land. In addition, the diurnal variation is obvious for shallow and deep convective systems, but not for shallow and deep stratiform systems.
  • [1] HU Liang, LI Yaodong, DENG Difei, 2013: An Investigation into the Relationship between Surface Rain Rate and Rain Depth over Southeast Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 142-152.  doi: 10.1007/s00376-012-2097-5
    [2] Ravidho RAMADHAN, MARZUKI, Mutya VONNISA, HARMADI, Hiroyuki HASHIGUCHI, Toyoshi SHIMOMAI, 2020: Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 832-846.  doi: 10.1007/s00376-020-9176-9
    [3] Hong WANG, Hengchi LEI, Jiefan YANG, 2017: Microphysical Processes of a Stratiform Precipitation Event over Eastern China: Analysis Using Micro Rain Radar data, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1472-1482.  doi: 10.1007/s00376-017-7005-6
    [4] Yongguang ZHENG, Yanduo GONG, Jiong CHEN, Fuyou TIAN, 2019: Warm-Season Diurnal Variations of Total, Stratiform, Convective, and Extreme Hourly Precipitation over Central and Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 143-159.  doi: 10.1007/s00376-018-7307-3
    [5] WEN Lijuan, Nidhi NAGABHATLA, Lü Shihua, Shih-Yu WANG, 2013: Impact of Rain Snow Threshold Temperature on Snow Depth Simulation in Land Surface and Regional Atmospheric Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1449-1460.  doi: 10.1007/s00376-012-2192-7
    [6] BAO Ming, 2008: Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 329-338.  doi: 10.1007/s00376-008-0329-5
    [7] Jingjing LÜ, Yue ZHOU, Zhikang FU, Chunsong LU, Qin HUANG, Jing SUN, Yue ZHAO, Shengjie NIU, 2023: Variability of Raindrop Size Distribution during a Regional Freezing Rain Event in the Jianghan Plain of Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 725-742.  doi: 10.1007/s00376-022-2131-1
    [8] Xingbao WANG, M. K. YAU, B. NAGARAJAN, Luc FILLION, 2010: The Impact of Assimilating Radar-estimated Rain Rates on Simulation of Precipitation in the 17--18 July 1996 Chicago Floods, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 195-210.  doi: 10.1007/s00376-009-8212-6
    [9] Wei HAN, Cunde XIAO, Tingfeng DOU, Minghu DING, 2018: Changes in the Proportion of Precipitation Occurring as Rain in Northern Canada during Spring-Summer from 1979-2015, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1129-1136.  doi: 10.1007/s00376-018-7226-3
    [10] Yunfei Fu, Yang Liu, Peng Zhang, Songyan Gu, Lin Chen, Sun Nan, 2024: A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3384-7
    [11] Wang Mingxing, 1984: DEFICIT OF PARTICULATE CHLORINE AND THE NONACID RAIN IN BEIJING, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 76-94.  doi: 10.1007/BF03187618
    [12] LIU Xiaoyang, MAO Jietai, ZHU Yuanjing, LI Jiren, 2003: Runoff Simulation Using Radar and Rain Gauge Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 213-218.  doi: 10.1007/s00376-003-0006-7
    [13] Keon Tae SOHN, Jeong Hyeong LEE, Soon Hwan LEE, Chan Su RYU, 2005: Statistical Prediction of Heavy Rain in South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 703-710.  doi: 10.1007/BF02918713
    [14] Bao Chenglan, 1985: ADVANCES IN THE SOUTH CHINA FFS HEAVY RAIN RESEARCH, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 282-294.  doi: 10.1007/BF02677244
    [15] Xu Guochang, Li Meifang, Zhang Zhiyin, 1985: SEASONAL VARIATION OF RAIN-BELTS OVER CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 368-375.  doi: 10.1007/BF02677253
    [16] Dai Honghua, Zheng Qisong, Zhao Zhaoxin, 1987: AN EXPERT SYSTEM FOR PREDICTING THE REGIONAL HEAVY RAIN, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 496-505.  doi: 10.1007/BF02656748
    [17] Zhao Bolin, 1990: Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 475-490.  doi: 10.1007/BF03342566
    [18] Xu Liren, Zhao Ming, 2000: The Influences of Boundary Layer Parameterization Schemes on Mesoscale Heavy Rain System, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 458-472.  doi: 10.1007/s00376-000-0036-3
    [19] JING Li, LU Hancheng, WANG Hanjie, ZHU Min, KOU Zheng, 2004: A Mesoscale Analysis of Heavy Rain Caused by Frontal and Topographical Heterogeneities on Taiwan Island, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 909-922.  doi: 10.1007/BF02663597
    [20] Long S. CHIU, Zhong LIU, Jearanai VONGSAARD, Stanley MORAIN, Amy BUDGE, Paul NEVILLE, Chandra BALES, 2006: Comparison of TRMM and Water District Rain Rates over New Mexico, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1-13.  doi: 10.1007/s00376-006-0001-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2010
Manuscript revised: 10 January 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Diurnal Variability of Precipitation Depth Over the Tibetan Plateau and its Surrounding Regions

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Sciences, Beijing 100049,I. M. Systems Group at NOAA/NESDIS, Camp Springs, MD,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Beijing Aviation Meteorological Institute, Beijing 100085,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The diurnal variability of precipitation depth over the Tibetan Plateau and its surrounding regions is investigated using nine years of Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements. The Tibetan Plateau, the plains area, and the East China Sea are selected as the focus regions in this study. The average precipitation depths (PD) are about 4.6 km, 5.8 km, and 5.6 km, while convective (stratiform) PDs are about 6.6 (4.5) km, 7.5 (5.7) km, and 6.0 (5.6) km over the plateau, the plains, and the ocean region, respectively. Results demonstrate a prominent PD diurnal cycle, and its diurnal phase is generally a few hours behind the surface precipitation. The spatial variation of the PD diurnal magnitude is weaker near the coastal areas than that of surface precipitation. The height of the PD diurnal peak is around 6--7 km for convective systems and 5--6 km for stratifrom systems. The dominant afternoon diurnal peak for convective PD and the flat diurnal peak for stratiform PD over the Tibetan Plateau indicate that solar diurnal forcing is the key mechanism of the PD diurnal cycle over land. In addition, the diurnal variation is obvious for shallow and deep convective systems, but not for shallow and deep stratiform systems.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return