Advanced Search
Article Contents

Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China


doi: 10.1007/s00376-009-8219-z

  • Persistent heavy rainfall events in South China can be divided into pre- and post-monsoon-onset events according to the onset of the South China Sea Summer Monsoon. In this study, daily rainfall data from 174 stations in South China and daily NCEP/NCAR reanalysis data are used to investigate pre-monsoon-onset events. The synoptic characteristics of pre-monsoon-onset heavy rainfall events are examined in detail. It is found that 21 heavy rainfall cases happened in the pre-monsoon period between 1961 and 2005. Among them, more than 60% of the events happened under a saddle pattern circulation. Using a case study, the role of the saddle field is investigated and slantwise vorticity development (SVD) theory is applied to diagnose the mechanisms for heavy rainfall development. It is found that a low-level saddle field and low-level jets result in the accumulation of warm moist air in the lower troposphere over South China and provide the necessary unstable conditions for heavy rainfall development. The existence of a saddle field plays an important role in maintaining these unstable conditions. The slantwise movement of the isentropic surface over South China can increase local vorticity and lead to strong vertical motion, which then triggers heavy rainfall.
  • [1] Se-Hwan YANG, LI Chaofan, and LU Riyu, 2014: Predictability of Winter Rainfall in South China as Demonstrated by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 779-786.  doi: 10.1007/s00376-013-3172-2
    [2] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [3] Hongbo LIU, Ruojing YAN, Bin WANG, Guanghua CHEN, Jian LING, Shenming FU, 2023: Multiscale Combined Action and Disturbance Characteristics of Pre-summer Extreme Precipitation Events over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 824-842.  doi: 10.1007/s00376-021-1172-1
    [4] Bin TANG, Wenting HU, Anmin DUAN, Yimin LIU, Wen BAO, Yue XIN, Xianyi YANG, 2024: Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3158-7
    [5] Shenming FU, Jingping ZHANG, Yali LUO, Wenying YANG, Jianhua SUN, 2022: Energy Paths that Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1519-1535.  doi: 10.1007/s00376-021-1336-z
    [6] Min-Hee LEE, Chang-Hoi HO, Joo-Hong KIM, 2010: Influence of Tropical Cyclone Landfalls on Spatiotemporal Variations in Typhoon Season Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 443-454.  doi: 10.1007/s00376-009-9106-3
    [7] Jianhua SUN, Yuanchun ZHANG, Ruixin LIU, Shenming FU, Fuyou TIAN, 2019: A Review of Research on Warm-Sector Heavy Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1299-1307.  doi: 10.1007/s00376-019-9021-1
    [8] Zuohao CAO, Da-Lin ZHANG, 2004: Tracking Surface Cyclones with Moist Potential Vorticity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 830-835.  doi: 10.1007/BF02916379
    [9] YE Hong, LU Riyu, 2012: Dominant Patterns of Summer Rainfall Anomalies in East China during 1951--2006, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 695-704.  doi: 10.1007/s00376-012-1153-5
    [10] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [11] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [12] Zuohao CAO, Da-Lin ZHANG, 2005: Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 807-820.  doi: 10.1007/BF02918681
    [13] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2005: A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 436-450.  doi: 10.1007/BF02918757
    [14] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [15] DONG Haiping, ZHAO Sixiong, ZENG Qingcun, 2007: A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 485-502.  doi: 10.1007/s00376-007-0485-z
    [16] PAN Yang, YU Rucong, LI Jian, XU Youping, 2008: A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 563-576.  doi: 10.1007/s00376-008-0563-x
    [17] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [18] WU Duochang, MENG Zhiyong, YAN Dachun, 2013: The Predictability of a Squall Line in South China on 23 April 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 485-502.  doi: 10.1007/s00376-012-2076-x
    [19] NING Liang, QIAN Yongfu, 2009: Interdecadal Change in Extreme Precipitation over South China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 109-118.  doi: 10.1007/s00376-009-0109-x
    [20] YUAN Fang, CHEN Wen, ZHOU Wen, 2012: Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 769-781.  doi: 10.1007/s00376-012-2018-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2010
Manuscript revised: 10 March 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China

  • 1. Center for Monsoon and Environment Research/Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275,Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Center for Monsoon and Environment Research/Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275,Institute for Geophysics and Meteorology, University of Cologne, Cologne 50937, Germany,Center for Monsoon and Environment Research/Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275

Abstract: Persistent heavy rainfall events in South China can be divided into pre- and post-monsoon-onset events according to the onset of the South China Sea Summer Monsoon. In this study, daily rainfall data from 174 stations in South China and daily NCEP/NCAR reanalysis data are used to investigate pre-monsoon-onset events. The synoptic characteristics of pre-monsoon-onset heavy rainfall events are examined in detail. It is found that 21 heavy rainfall cases happened in the pre-monsoon period between 1961 and 2005. Among them, more than 60% of the events happened under a saddle pattern circulation. Using a case study, the role of the saddle field is investigated and slantwise vorticity development (SVD) theory is applied to diagnose the mechanisms for heavy rainfall development. It is found that a low-level saddle field and low-level jets result in the accumulation of warm moist air in the lower troposphere over South China and provide the necessary unstable conditions for heavy rainfall development. The existence of a saddle field plays an important role in maintaining these unstable conditions. The slantwise movement of the isentropic surface over South China can increase local vorticity and lead to strong vertical motion, which then triggers heavy rainfall.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return