Advanced Search
Article Contents

Climatological Characteristics of the Moisture Budget and Their Anomalies over the Joining Area of Asia and the Indian-Pacific Ocean


doi: 10.1007/s00376-009-9010-x

  • The climatological characteristics of the moisture budget over the joining area of Asia and the Indian-Pacific Ocean (AIPO) and its adjacent regions as well as their anomalies have been estimated in this study. The main results are as follows. In the winter, the northeasterly moisture transport covers the extensive areas at the lower latitudes of the AIPO. The westerly and northerly moisture transport is the major source and the South Indian Ocean (SIO) is the moisture sink. In the summer, influenced by the southwesterly monsoonal wind, the cross-equatorial southwesterly moisture transport across Somali originating from the SIO is transported through the Arabian Sea (AS), the Bay of Bengal (BOB), and the South China Sea (SCS) to eastern China. The AIPO is controlled by the southwesterly moisture transport. The net moisture influx over the AIPO has obvious interannual and interdecadal variations. From the mid- or late 1970s, the influxes over the SIO, the AS, the northern part of the western North Pacific (NWNP), and North China (NC) as well as South China (SC) begin to decrease abruptly, while those over Northeast China (NEC) and the Yangtze River-Huaihe River basins (YHRB) have increased remarkably. As a whole, the net moisture influxes over the BOB and the southern part of the western North Pacific (SWNP) in the recent 50 years take on a linear increasing trend. However, the transition timing for these two regions is different with the former being at the mid- or late 1980s and the latter occurring earlier, approximately at the early stage of the 1970s. The anomalous moisture source associated with the precipitation anomalies is different from the normal conditions of the summer precipitation. For the drought or flood years or the years of El Ni\~no and its following years, the anomalous moisture transport originating from the western North Pacific (WNP) is the vital source of the anomalous precipitation over eastern China, which is greatly related with the variation of the subtropical Pacific high.
  • [1] Linhao ZHONG, Lijuan HUA, Zhaohui GONG, Yao YAO, Lin MU, 2022: Quantifying the Spatial Characteristics of the Moisture Transport Affecting Precipitation Seasonality and Recycling Variability in Central Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 967-984.  doi: 10.1007/s00376-021-1383-5
    [2] Ni Yunqi, Zhang Qin, 1996: Low Frequency Characteristics of Tropical Pacific Wind Stress Anomalies in Observations and Simulations from a Simple and a Comprehensive Models, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 445-460.  doi: 10.1007/BF03342036
    [3] Yi Lan, 1995: Characteristics of the Mean Water Vapor Transport over Monsoon Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 195-206.  doi: 10.1007/BF02656832
    [4] Gian A. VILLAMIL-OTERO, Jing ZHANG, Juanxiong HE, Xiangdong ZHANG, 2018: Role of Extratropical Cyclones in the Recently Observed Increase in Poleward Moisture Transport into the Arctic Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 85-94.  doi: 10.1007/s00376-017-7116-0
    [5] Xia ZHAO, Dongliang YUAN, Guang YANG, Hui ZHOU, Jing WANG, 2016: Role of the Oceanic Channel in the Relationships between the Basin/Dipole Mode of SST Anomalies in the Tropical Indian Ocean and ENSO Transition, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1386-1400.  doi: 10.1007/s00376-016-6048-4
    [6] Lu Riyu, 2000: Anomalies in the Tropics Associated with the Heavy Rainfall in East Asia during the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 205-220.  doi: 10.1007/s00376-000-0004-y
    [7] Juan AO, Jianqi SUN, 2016: The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 644-655.  doi: 10.1007/s00376-015-5067-x
    [8] Lu Riyu, Huang Ronghui, 1996: Numerical Simulation of the Effect of the SST Anomalies in the Tropical Western Pacific on the Blocking Highs over the Northeastern Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 411-424.  doi: 10.1007/BF03342034
    [9] LI Chongyin, XIAN Peng, 2003: Atmospheric Anomalies Related to Interdecadal Variability of SST in the North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 859-874.  doi: 10.1007/BF02915510
    [10] Yang Hui, 2001: Anomalous Atmospheric Circulation, Heat Sources and Moisture Sinks in Relation to Great Precipitation Anomalies in the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 972-983.
    [11] Shang-Ping XIE, Yu KOSAKA, Yan DU, Kaiming HU, Jasti S. CHOWDARY, Gang HUANG, 2016: Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-ENSO Summer: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 411-432.  doi: 10.1007/s00376-015-5192-6
    [12] Chen Longxun, Li Weiliang, 1985: THE ATMOSPHERIC HEAT BUDGET IN SUMMER OVER ASIA MONSOON AREA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 487-497.  doi: 10.1007/BF02678747
    [13] Wu Renguang, Chen Lieting, 1998: Decadal Variation of Summer Rainfall in the Yangtze-Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 510-522.  doi: 10.1007/s00376-998-0028-2
    [14] XU Xiangde, ZHOU Li, ZHANG Shengjun, MIAO Qiuju, 2003: Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 269-283.  doi: 10.1007/s00376-003-0013-8
    [15] S. S. Dugam, S. B. Kakade, R. K. Verma, 1990: Global Annual Mean Surface Air Temperature Anomalies and Their Link with Indian Summer Monsoon Failures, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 245-248.  doi: 10.1007/BF02919162
    [16] Wei CHEN, Xiaowei HONG, Riyu LU, Aifen JIN, Shizhu JIN, Jae-Cheol NAM, Jin-Ho SHIN, Tae-Young GOO, Baek-Jo KIM, 2016: Variation in Summer Surface Air Temperature over Northeast Asia and Its Associated Circulation Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1-9.  doi: 10.1007/s00376-015-5056-0
    [17] Huang Ronghui, Zhang Renhe, Zhang Qingyun, 2000: The 1997/ 98 ENSO Cycle and Its Impact on Summer Climate Anomalies in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 348-362.  doi: 10.1007/s00376-000-0028-3
    [18] Zhang Weiqing, Qian Yongfu, 2001: The Relationships between Variations of Sea SurfaceTemperature Anomalies in the Key Ocean Areasand the Precipitation and SurfaceAir Temperature in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 294-308.  doi: 10.1007/s00376-001-0021-5
    [19] Zhang Renhe, Zhao Gang, 2001: Meridional Wind Stress Anomalies over the Tropical Pacific and the Onset of El Ni?o Part Ⅱ: Dynamical Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1053-1065.  doi: 10.1007/s00376-001-0022-4
    [20] ZHAO Xia, LI Jianping, ZHANG Wenjun, 2012: Summer Persistence Barrier of Sea Surface Temperature Anomalies in the Central Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1159-1173.  doi: 10.1007/s00376-012-1253-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2009
Manuscript revised: 10 July 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Climatological Characteristics of the Moisture Budget and Their Anomalies over the Joining Area of Asia and the Indian-Pacific Ocean

  • 1. National Climate Center, China Meteorological Administration, Beijing 100081,National Climate Center, China Meteorological Administration, Beijing 100081,National Climate Center, China Meteorological Administration, Beijing 100081; School of Physics, Peking University, Beijing 100871,National Climate Center, China Meteorological Administration, Beijing 100081

Abstract: The climatological characteristics of the moisture budget over the joining area of Asia and the Indian-Pacific Ocean (AIPO) and its adjacent regions as well as their anomalies have been estimated in this study. The main results are as follows. In the winter, the northeasterly moisture transport covers the extensive areas at the lower latitudes of the AIPO. The westerly and northerly moisture transport is the major source and the South Indian Ocean (SIO) is the moisture sink. In the summer, influenced by the southwesterly monsoonal wind, the cross-equatorial southwesterly moisture transport across Somali originating from the SIO is transported through the Arabian Sea (AS), the Bay of Bengal (BOB), and the South China Sea (SCS) to eastern China. The AIPO is controlled by the southwesterly moisture transport. The net moisture influx over the AIPO has obvious interannual and interdecadal variations. From the mid- or late 1970s, the influxes over the SIO, the AS, the northern part of the western North Pacific (NWNP), and North China (NC) as well as South China (SC) begin to decrease abruptly, while those over Northeast China (NEC) and the Yangtze River-Huaihe River basins (YHRB) have increased remarkably. As a whole, the net moisture influxes over the BOB and the southern part of the western North Pacific (SWNP) in the recent 50 years take on a linear increasing trend. However, the transition timing for these two regions is different with the former being at the mid- or late 1980s and the latter occurring earlier, approximately at the early stage of the 1970s. The anomalous moisture source associated with the precipitation anomalies is different from the normal conditions of the summer precipitation. For the drought or flood years or the years of El Ni\~no and its following years, the anomalous moisture transport originating from the western North Pacific (WNP) is the vital source of the anomalous precipitation over eastern China, which is greatly related with the variation of the subtropical Pacific high.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return