Advanced Search
Article Contents

The Variations of Dominant Convection Modes over Asia, Indian Ocean, and Western Pacific Ocean during the Summers of 1997--2004


doi: 10.1007/s00376-009-9072-9

  • The NOAA daily outgoing longwave radiation (OLR) and the Global Precipitation Climatology Project (GPCP) daily precipitation data are used to study the variation of dominant convection modes and their relationships over Asia, the Indian Ocean, and the western Pacific Ocean during the summers from 1997 to 2004. Major findings are as follows: (1) Regression analysis with the OLR indicates the convective variations over Asian monsoon region are more closely associated with the convective activities over the western subtropical Pacific (WSP) than with those over the northern tropical Indian Ocean (NTIO). (2) The EOF analysis of OLR indicates the first mode (EOF1) exhibits the out-of-phase variations between eastern China and India, and between eastern China and the WSP. The OLR EOF1 primarily exhibits seasonal and even longer-term variations. (3) The OLR EOF2 mostly displays in-phase convective variations over India, the Bay of Bengal, and southeastern China. A wavelet analysis reveals intraseasonal variation (ISV) features in 2000, 2001, 2002, and 2004. However, the effective ISV does not take place in every year and it seems to occur only when the centers of an east--west oriented dipole reach enough intensity over the tropical Indian and western Pacific Oceans. (4) The spatial patterns of OLR EOF3 are more complicated than those of EOF1 and EOF2, and an effective ISV is noted from 1999 to 2004. The OLR EOF3 implies there is added complexity of the OLR pattern when the effective ISV occurs. (5) The correlation analysis suggests the precipitation over India is more closely associated with the ISV, seasonal variations, and even longer-term variations than precipitation occurring over eastern China.
  • [1] Wang Huijun, 1994: Modelling the Interannual Variation of Regional Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 230-238.  doi: 10.1007/BF02666549
    [2] ZHI Hai, ZHANG Rong-Hua, LIN Pengfei, WANG Lanning, 2015: Quantitative Analysis of the Feedback Induced by the Freshwater Flux in the Tropical Pacific Using CMIP5, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1341-1353.  doi: 10.1007/s00376-015-5064-0
    [3] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [4] WU Yunfei, ZHANG Renjian, HAN Zhiwei, ZENG Zhaomei, 2010: Relationship between East Asian Monsoon and Dust Weather Frequency over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1389-1398.  doi: 10.1007/s00376-010-9181-5
    [5] XU Xiangde, ZHOU Li, ZHANG Shengjun, MIAO Qiuju, 2003: Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 269-283.  doi: 10.1007/s00376-003-0013-8
    [6] Wen ZHOU, Richard C. Y. LI, Eric C. H. CHOW, 2017: Intraseasonal Variation of Visibility in Hong Kong, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 26-38.  doi: 10.1007/s00376-016-6056-4
    [7] LI Gang, LI Chongyin, TAN Yanke, BAI Tao, 2012: Seasonal Evolution of Dominant Modes in South Pacific SST and Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1238-1248.  doi: 10.1007/s00376-012-1191-z
    [8] Li Zhenjun, 1998: Estimation of Cloud Motion Using Cross-Correlation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 277-282.  doi: 10.1007/s00376-998-0046-0
    [9] Xiaojuan SUN, Siyan LI, Julian X. L WANG, Panxing WANG, Dong GUO, 2022: A New Method of Significance Testing for Correlation-Coefficient Fields and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 529-535.  doi: 10.1007/s00376-021-1196-6
    [10] SI Fuqi, LIU Jianguo, XIE Pinghua, ZHANG Yujun, LIU Wenqing, Hiroaki KUZE, Nofel LAGROSAS, Nobuo TAKEUCHI, 2006: Correlation Study Between Suspended Particulate Matter and DOAS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 461-467.  doi: 10.1007/s00376-006-0461-z
    [11] Li Wei, Yu Rucong, Liu Hailong, Yu Yongqiang, 2001: Impacts of Diurnal Cycle of SST on the Intraseasonal Variation of Surface Heat Flux over the Western PacificWarm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 793-806.
    [12] SU Tonghua, XUE Feng*, ZHANG He, 2014: Simulating the Intraseasonal Variation of the East Asian Summer Monsoon by IAP AGCM4.0, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 570-580.  doi: 10.1007/s00376-013-3029-8
    [13] Wenyue HE, Bo SUN, Huijun WANG, 2021: Dominant Modes of Interannual Variability in Atmospheric Water Vapor Content over East Asia during Winter and Their Associated Mechanisms, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1706-1722.  doi: 10.1007/s00376-021-0014-5
    [14] Jae-Young BYON, Gyu-Ho LIM, 2005: Diurnal Variation of Tropical Convection during TOGA COARE IOP, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 685-702.  doi: 10.1007/BF02918712
    [15] MARZUKI, Hiroyuki HASHIGUCHI, Mutya VONNISA, HARMADI, Masaki KATSUMATA, 2018: Determination of Intraseasonal Variation of Precipitation Microphysics in the Southern Indian Ocean from Joss-Waldvogel Disdrometer Observation during the CINDY Field Campaign, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1415-1427.  doi: 10.1007/s00376-018-8026-5
    [16] JIANG Yuxin, TAN Benkui, 2015: Two Modes and Their Seasonal and Interannual Variation of the Baroclinic Waves/Storm Tracks over the Wintertime North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1244-1254.  doi: 10.1007/s00376-015-4251-3
    [17] Tingting HAN, Shengping HE, Huijun WANG, Xin HAO, 2019: Variation in Principal Modes of Midsummer Precipitation over Northeast China and Its Associated Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 55-64.  doi: 10.1007/s00376-018-8072-z
    [18] Ren Baohua, Huang Ronghui, 2002: 10-25-Day Intraseasonal Variations of Convection and Circulation Associated with Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 321-336.  doi: 10.1007/s00376-002-0025-9
    [19] WANG Tijian, K. S. LAM, C. W. TSANG, S. C. KOT, 2004: On the Variability and Correlation of Surface Ozone and Carbon Monoxide Observed in Hong Kong Using Trajectory and Regression Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 141-152.  doi: 10.1007/BF02915688
    [20] TANG Yanbing, ZHAO Lu, GAO Kun, 2009: Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1169-1180.  doi: 10.1007/s00376-009-8006-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2010
Manuscript revised: 10 July 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Variations of Dominant Convection Modes over Asia, Indian Ocean, and Western Pacific Ocean during the Summers of 1997--2004

  • 1. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081,Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081,Training Centre, China Meteorological Administration, Beijing 100081,Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081

Abstract: The NOAA daily outgoing longwave radiation (OLR) and the Global Precipitation Climatology Project (GPCP) daily precipitation data are used to study the variation of dominant convection modes and their relationships over Asia, the Indian Ocean, and the western Pacific Ocean during the summers from 1997 to 2004. Major findings are as follows: (1) Regression analysis with the OLR indicates the convective variations over Asian monsoon region are more closely associated with the convective activities over the western subtropical Pacific (WSP) than with those over the northern tropical Indian Ocean (NTIO). (2) The EOF analysis of OLR indicates the first mode (EOF1) exhibits the out-of-phase variations between eastern China and India, and between eastern China and the WSP. The OLR EOF1 primarily exhibits seasonal and even longer-term variations. (3) The OLR EOF2 mostly displays in-phase convective variations over India, the Bay of Bengal, and southeastern China. A wavelet analysis reveals intraseasonal variation (ISV) features in 2000, 2001, 2002, and 2004. However, the effective ISV does not take place in every year and it seems to occur only when the centers of an east--west oriented dipole reach enough intensity over the tropical Indian and western Pacific Oceans. (4) The spatial patterns of OLR EOF3 are more complicated than those of EOF1 and EOF2, and an effective ISV is noted from 1999 to 2004. The OLR EOF3 implies there is added complexity of the OLR pattern when the effective ISV occurs. (5) The correlation analysis suggests the precipitation over India is more closely associated with the ISV, seasonal variations, and even longer-term variations than precipitation occurring over eastern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return