Advanced Search
Article Contents

Local Meteorological and Synoptic Characteristics of Fogs Formed over Incheon International Airport in the West Coast of Korea


doi: 10.1007/s00376-009-9090-7

  • Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal extent of the fogs and the difference between the air temperature (T) and the SST, i.e., cold sea fog if TSST = T-SST>0oC and warm sea fog if TSST oC. The numbers of coastal, cold, and warm sea fog cases are 64, 26, and 9. Coastal fogs form most frequently in winter, while cold sea fogs occur mostly in summer and warm sea fogs are observed from January to May but not in November and December. On average the air gets colder by 1.6oC during the three hours leading up to the coastal fog formation, and an additional cooling of 1.1oC occurs during the fog. The change in the dew point temperature (Td) is minimal except during the fog (0.6oC). Decreases in T for the cold and warm sea fogs are relatively smaller. The average Td is higher than SST during the cold sea fog periods but this Td is more than 4oC higher than that for the corresponding non-fog days, suggesting that cold sea fogs be formed by the cooling of already humid air (i.e., Td>SST). Increases of Td are significant during the warm sea fog periods (1.4oC), implying that efficient moisture supply is essential to warm sea fog formation. Four major synoptic patterns are identified in association with the observed fogs. The most frequent is a north Pacific high that accounts for 38% of cases. Surface or upper inversions are present in 77%, 69%, and 81% of the fog periods for coastal, cold, and warm sea fogs, respectively.
  • [1] Yoo-Jun KIM, So-Ra IN, Hae-Min KIM, Jin-Hwa LEE, Kyu Rang KIM, Seungbum KIM, Byung-Gon KIM, 2021: Sensitivity of Snowfall Characteristics to Meteorological Conditions in the Yeongdong Region of Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 413-429.  doi: 10.1007/s00376-020-0157-9
    [2] ZHAO Lijuan, NIU Shengjie, ZHANG Yu, and XU Feng, 2013: Microphysical characteristics of sea fog over the east coast of Leizhou Peninsula, China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1154-1172.  doi: 10.1007/s00376-012-1266-x
    [3] LIU Hongnian, JIANG Weimei, HUANG Jian, MAO Weikang, 2011: Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1377-1389.  doi: 10.1007/s00376-011-0191-8
    [4] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [5] Ki-Young HEO, Kyung-Ja HA, 2008: Snowstorm over the Southwestern Coast of the Korean Peninsula Associated with the Development of Mesocyclone over the Yellow Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 765-777.  doi: 10.1007/s00376-008-0765-2
    [6] Arona DIEDHIOU, Luiz A. T. MACHADO, Henri LAURENT, 2010: Mean Kinematic Characteristics of Synoptic Easterly Disturbances over the Atlantic, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 483-499.  doi: 10.1007/s00376-009-9092-5
    [7] Liu Qinyu, Jia Yinglai, Wang Xiaohua, Yang Haijun, 2001: On the Annual Cycle Characteristics of the Sea Surface Height in South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 613-622.  doi: 10.1007/s00376-001-0049-6
    [8] Joo-Wan CHA, Ki-Ho CHANG, Seong Soo YUM, Young-Jean CHOI, 2009: Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 211-221.  doi: 10.1007/s00376-009-0211-0
    [9] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [10] Jianhong WANG, Meiqi LI, X. San LIANG, Xing WANG, Feng XUE, Mo PENG, Chunsheng MIAO, 2018: Regional Characteristics of Typhoon-Induced Ocean Eddies in the East China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 826-838.  doi: 10.1007/s00376-017-7173-4
    [11] Qingwei ZENG, Yun ZHANG, Hengchi LEI, Yanqiong XIE, Taichang GAO, Lifeng ZHANG, Chunming WANG, Yanbin HUANG, 2019: Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1103-1120.  doi: 10.1007/s00376-019-8225-8
    [12] LIU Xiying, ZHANG Xuehong, YU Yongqiang, YU Rucong, 2004: Mean Climatic Characteristics in High Northern Latitudes in an Ocean-Sea Ice-Atmosphere Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 236-244.  doi: 10.1007/BF02915710
    [13] CHENG Xue-Ling, HUANG Jian, WU Lin, ZENG Qing-Cun, 2015: Structures and Characteristics of the Windy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 772-782.  doi: 10.1007/s00376-014-4228-7
    [14] YUE Yanyu, NIU Shengjie, ZHAO Lijuan, ZHANG Yu, XU Feng, 2014: The Influences of Macro- and Microphysical Characteristics of Sea-Fog on Fog-Water Chemical Composition, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 624-636.  doi: 10.1007/s00376-013-3059-2
    [15] Yan Jinghua, Chen Longxun, Wang Gu, 1988: THE PROPAGATION CHARACTERISTICS OF INTERANNUAL LOW-FREQUENCY OSCILLATIONS IN THE TROPICAL AIR-SEA SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 405-420.  doi: 10.1007/BF02656787
    [16] Zhu Congwen, Chen Longxun, Nobuo Yamazaki, 1999: The Interdecadal Variation Characteristics of Arctic Sea Ice Cover-ENSO-East Asian Monsoon and Their Interrelationship at Quasi-Four Years Time Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 641-652.  doi: 10.1007/s00376-999-0038-8
    [17] Chen Changsheng, Qin Zenghao, 1985: NUMERICAL SIMULATION OF TYPHOON SURGES ALONG THE EAST COAST OF ZHEJIANG AND JIANGSU PROVINCES, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 8-19.  doi: 10.1007/BF03179732
    [18] Baek-Jo Kim, Sung-Euii Moon, Lu Riyu, R. H. Kripalani, 2002: Teleconnections: Summer Monsoon over Korea and India, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 665-676.  doi: 10.1007/s00376-002-0006-z
    [19] Keon Tae SOHN, Jeong Hyeong LEE, Soon Hwan LEE, Chan Su RYU, 2005: Statistical Prediction of Heavy Rain in South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 703-710.  doi: 10.1007/BF02918713
    [20] Keon Tae SOHN, Jeong Hyeong LEE, Young Seuk CHO, 2009: Ternary Forecast of Heavy Snowfall in the Honam Area, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 327-332.  doi: 10.1007/s00376-009-0327-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2010
Manuscript revised: 10 July 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Local Meteorological and Synoptic Characteristics of Fogs Formed over Incheon International Airport in the West Coast of Korea

  • 1. Department of Atmospheric Sciences, Yonsei University 134 Shinchon-dong, Seodaemun-gu, Seoul 120--749, Korea,Department of Atmospheric Sciences, Yonsei University 134 Shinchon-dong, Seodaemun-gu, Seoul 120--749, Korea

Abstract: Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal extent of the fogs and the difference between the air temperature (T) and the SST, i.e., cold sea fog if TSST = T-SST>0oC and warm sea fog if TSST oC. The numbers of coastal, cold, and warm sea fog cases are 64, 26, and 9. Coastal fogs form most frequently in winter, while cold sea fogs occur mostly in summer and warm sea fogs are observed from January to May but not in November and December. On average the air gets colder by 1.6oC during the three hours leading up to the coastal fog formation, and an additional cooling of 1.1oC occurs during the fog. The change in the dew point temperature (Td) is minimal except during the fog (0.6oC). Decreases in T for the cold and warm sea fogs are relatively smaller. The average Td is higher than SST during the cold sea fog periods but this Td is more than 4oC higher than that for the corresponding non-fog days, suggesting that cold sea fogs be formed by the cooling of already humid air (i.e., Td>SST). Increases of Td are significant during the warm sea fog periods (1.4oC), implying that efficient moisture supply is essential to warm sea fog formation. Four major synoptic patterns are identified in association with the observed fogs. The most frequent is a north Pacific high that accounts for 38% of cases. Surface or upper inversions are present in 77%, 69%, and 81% of the fog periods for coastal, cold, and warm sea fogs, respectively.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return