Advanced Search
Article Contents

A Composite Approach of Radar Echo Extrapolation Based on TREC Vectors in Combination with Model-Predicted Winds


doi: 10.1007/s00376-009-9093-4

  • Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.
  • [1] LIU Hongya, XUE Jishan, GU Jianfeng, XU Haiming, 2012: Radar Data Assimilation of the GRAPES Model and Experimental Results in a Typhoon Case, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 344-358.  doi: 10.1007/s00376-011-1063-y
    [2] KUANG Zheng, WANG Bin, YANG Hualin, 2003: A Rapid Optimization Algorithm for GPS Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 437-441.  doi: 10.1007/BF02690801
    [3] Jidong GAO, Keith BREWSTER, Ming XUE, 2006: A Comparison of the Radar Ray Path Equations and Approximations for Use in Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 190-198.  doi: 10.1007/s00376-006-0190-3
    [4] Fang Yuan, Zijiang Zhou, LIAO Jie, 2024: A New method for deriving the high-vertical-resolution Wind Vector data from L-band radar sounding system in China, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3163-5
    [5] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [6] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [7] Zhou Jiabin, Wang Yunkuan, Yang Guiying, Wu Jinsheng, 1994: A Forecasting Model of Vector Similarity in Phase Space for Flood and Drought over the Huanghe-Huaihe-Haihe Plain in China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 224-229.  doi: 10.1007/BF02666548
    [8] Xiaqiong ZHOU, Johnny C. L. CHEN, 2006: Ensemble Forecasting of Tropical Cyclone Motion Using a Baroclinic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 342-354.  doi: 10.1007/s00376-006-0342-5
    [9] Yaodeng CHEN, Jie SHEN, Shuiyong FAN, Deming MENG, Cheng WANG, 2020: Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1222-1238.  doi: 10.1007/s00376-020-0080-0
    [10] YUE Caijun, SHOU Shaowen, 2008: A Modified Moist Ageostrophic Q Vector, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1053-1061.  doi: 10.1007/s00376-008-1053-x
    [11] Guifu ZHANG, Jidong GAO, Muyun DU, 2021: Parameterized Forward Operators for Simulation and Assimilation of Polarimetric Radar Data with Numerical Weather Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 737-754.  doi: 10.1007/s00376-021-0289-6
    [12] Shibo GAO, Haiqiu YU, Chuanyou REN, Limin LIU, Jinzhong MIN, 2021: Assimilation of Doppler Radar Data with an Ensemble 3DEnVar Approach to Improve Convective Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 132-146.  doi: 10.1007/s00376-020-0081-z
    [13] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [14] Xin LI, Mingjian ZENG, Yuan WANG, Wenlan WANG, Haiying WU, Haixia MEI, 2016: Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1143-1157.  doi: 10.1007/s00376-016-5255-3
    [15] ZHU Kefeng, YANG Yi, Ming XUE, 2015: Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1449-1459.  doi: 10.1007/s00376-015-5023-9
    [16] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [17] LU Huijuan, Qin XU, YAO Mingming, GAO Shouting, 2011: Time-Expanded Sampling for Ensemble-Based Filters: Assimilation Experiments with Real Radar Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 743-757.  doi: 10.1007/s00376-010-0021-4
    [18] Yujie PAN, Ming XUE, Kefeng ZHU, Mingjun WANG, 2018: A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 518-530.  doi: 10.1007/s00376-017-7108-0
    [19] Jian YUE, Zhiyong MENG, Cheng-Ku YU, Lin-Wen CHENG, 2017: Impact of Coastal Radar Observability on the Forecast of the Track and Rainfall of Typhoon Morakot (2009) Using WRF-based Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 66-78.  doi: 10.1007/s00376-016-6028-8
    [20] Lu ZHANG, Xiangjun TIAN, Hongqin ZHANG, Feng CHEN, 2020: Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 873-892.  doi: 10.1007/s00376-020-9274-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2010
Manuscript revised: 10 September 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Composite Approach of Radar Echo Extrapolation Based on TREC Vectors in Combination with Model-Predicted Winds

  • 1. Guangdong Meteorological Observatory, Guangzhou 510080,Guangdong Meteorological Observatory, Guangzhou 510080,Guangdong Meteorological Observatory, Guangzhou 510080,Guangdong Meteorological Observatory, Guangzhou 510080,Guangzhou Institute of Tropical and Marine Meteorology, Guangzhou 510080,Guangdong Meteorological Observatory, Guangzhou 510080,Guangzhou Institute of Tropical and Marine Meteorology, Guangzhou 510080

Abstract: Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return