Advanced Search
Article Contents

Impacts of Future NOx and CO Emissions on Regional Chemistry and Climate over Eastern China


doi: 10.1007/s00376-009-9101-8

  • A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.
  • [1] Hemin SUN, Guojie WANG, Xiucang LI, Jing CHEN, Buda SU, Tong JIANG, 2017: Regional Frequency Analysis of Observed Sub-Daily Rainfall Maxima over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 209-225.  doi: 10.1007/s00376-016-6086-y
    [2] BAO Ming, HAN Rongqing, 2009: Delayed Impacts of the El Nino Episodes in the Central Pacific on the Summertime Climate Anomalies of Eastern China in 2003 and 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 553-563.  doi: 10.1007/s00376-009-0553-7
    [3] LI Yunying, YU Rucong, XU Youping, ZHOU Tianjun, 2005: AREM Simulations of Cloud Features over Eastern China in February 2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 260-270.  doi: 10.1007/BF02918515
    [4] Yali ZHU, Tao WANG, Jiehua MA, 2016: Influence of Internal Decadal Variability on the Summer Rainfall in Eastern China as Simulated by CCSM4, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 706-714.  doi: 10.1007/s00376-016-5269-x
    [5] Yue ZHANG, Wen Zhou, Ruhua Zhang, 2024: Decadal Changes in Dry and Wet Heatwaves in Eastern China: Spatial Patterns and Risk Assessment, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3261-4
    [6] Chujie GAO, Gen LI, 2023: Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1632-1648.  doi: 10.1007/s00376-023-2361-x
    [7] Jingrui YAN, Wenjun ZHANG, Suqiong HU, Feng JIANG, 2024: Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3196-1
    [8] YUAN Weihua, YU Rucong, LI Jian, 2013: Changes in the Diurnal Cycles of Precipitation over Eastern China in the Past 40 Years, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 461-467.  doi: 10.1007/s00376-012-2092-x
    [9] Zhiyan ZUO, Renhe ZHANG, 2016: Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 151-163.  doi: 10.1007/s00376-015-5024-8
    [10] SU Mingfeng, LIN Yunping, FAN Xinqiang, PENG Li, ZHAO Chunsheng, 2012: Impacts of Global Emissions of CO, NOx, and CH4 on China Tropospheric Hydroxyl Free Radicals, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 838-854.  doi: 10.1007/s00376-012-1229-2
    [11] Yang Yang, Minqiang Zhou, Wei Wang, Zijun Ning, Feng Zhang, Pucai Wang, 2024: Quantification of CO2 emissions from three power plants in China using OCO-3 satellite measurements, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3293-9
    [12] Chujie GAO, Haishan CHEN, Shanlei SUN, Bei XU, Victor ONGOMA, Siguang ZHU, Hedi MA, Xing LI, 2018: Regional Features and Seasonality of Land-Atmosphere Coupling over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 689-701.  doi: 10.1007/s00376-017-7140-0
    [13] Yu FU, Hong LIAO, Yang YANG, 2019: Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry-Climate Interactions: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 975-993.  doi: 10.1007/s00376-019-8216-9
    [14] ZOU Liwei, and ZHOU Tianjun, 2013: Near Future (201640) Summer Precipitation Changes over China as Projected by a Regional Climate Model (RCM) under the RCP8.5 Emissions Scenario: Comparison between RCM Downscaling and the Driving GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 806-818.  doi: 10.1007/s00376-013-2209-x
    [15] SHEN Shuanghe, YANG Dong, XIAO Wei, LIU Shoudong, Xuhui LEE, 2014: Constraining Anthropogenic CH4 Emissions in Nanjing and the Yangtze River Delta, China, Using Atmospheric CO2 and CH4 Mixing Ratios, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1343-1352.  doi: 10.1007/s00376-014-3231-3
    [16] Gao Xuejie, Zhao Zongci, Ding Yihui, Huang Ronghui, Filippo Giorgi, 2001: Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1224-1230.  doi: 10.1007/s00376-001-0036-y
    [17] GAO Xuejie, LUO Yong, LIN Wantao, ZHAO Zongci, Filippo GIORGI, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 583-592.  doi: 10.1007/BF02915501
    [18] LIU Yu, I.S.A.ISAKSEN, J.K.SUNDET, ZHOU Xiuji, MA Jianzhong, 2003: Impact of Aircraft NOx Emission on NOx and Ozone over China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 565-574.  doi: 10.1007/BF02915499
    [19] CHEN Feng, and XIE Zhenghui, 2013: An evaluation of RegCM3_CRES for regional climate modeling in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1187-1200.  doi: 10.1007/s00376-012-2114-8
    [20] Jianping DUAN, Hongzhou ZHU, Li DAN, Qiuhong TANG, 2023: Recent Progress in Studies on the Influences of Human Activity on Regional Climate over China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1362-1378.  doi: 10.1007/s00376-023-2327-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2010
Manuscript revised: 10 July 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of Future NOx and CO Emissions on Regional Chemistry and Climate over Eastern China

  • 1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return