Advanced Search
Article Contents

Temporal Variability in Fine Carbonaceous Aerosol over Two Years in Two Megacities: Beijing and Toronto


doi: 10.1007/s00376-009-9103-6

  • Time-series of weekly total carbon (TC) concentrations of fine aerosol particles (PM2.5 in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003. In addition to this comparison, differences in the factors contributing to the observed concentrations and their temporal variations are discussed. Based upon past knowledge about the two megacities with highly contrasting air pollutant levels, it is not surprising that the average TC concentration in Beijing (31.5 μg C m-3) was greater than that in Toronto by a factor of 8.3. Despite their large concentration differences, in both cities TC comprised a similarly large component of PM2.5. TC concentrations exhibited very different seasonal patterns between the two cities. In Beijing, TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result, the greatest gap in TC concentrations between Beijing and Toronto (by a factor of 12.7) occurred in winter, while the smallest gap (a factor of 4.6) was in summer. In Beijing, seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality, while in Toronto during the warm months more than 80% of the hourly winds were recorded from the south, along with many potential anthropogenic sources for the days with high TC concentrations. This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.
  • [1] XIN Jinyuan, WANG Yuesi, WANG Lili, TANG Guiqian, SUN Yang, PAN Yuepeng, JI Dongsheng, 2012: Reductions of PM2.5 in Beijing--Tianjin--Hebei Urban Agglomerations during the 2008 Olympic Games, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1330-1342.  doi: 10.1007/s00376-012-1227-4
    [2] LIU Dameng, GAO Shaopeng, AN Xianghua, 2008: Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 297-305.  doi: 10.1007/s00376-008-0297-9
    [3] SUN Yang, WANG Yuesi, ZHANG Changchun, 2010: Vertical Observations and Analysis of PM2.5, O3, and NOx at Beijing and Tianjin from Towers during Summer and Autumn 2006, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 123-136.  doi: 10.1007/s00376-009-8154-z
    [4] YU Jianhua, CHEN Tian, Benjamin GUINOT, Helene CACHIER, YU Tong, LIU Wenqing, WANG Xin, 2006: Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 468-473.  doi: 10.1007/s00376-006-0468-5
    [5] WANG Gengchen, BAI Jianhui, KONG Qinxin, Alexander EMILENKO, 2005: Black Carbon Particles in the Urban Atmosphere in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 640-646.  doi: 10.1007/BF02918707
    [6] Jong-Kil PARK, LU Riyu, LI Chaofan, Eun Byul KIM, 2012: Interannual Variation of Tropical Night Frequency in Beijing and Associated Large-Scale Circulation Background, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 295-306.  doi: 10.1007/s00376-011-1141-1
    [7] ZHANG Hua, WANG Zhili, GUO Pinwen, WANG Zaizhi, 2009: A Modeling Study of the Effects of Direct Radiative Forcing Due to Carbonaceous Aerosol on the Climate in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 57-66.  doi: 10.1007/s00376-009-0057-5
    [8] SHAO Longyi, LI Weijun, XIAO Zhenghui, SUN Zhenquan, 2008: The Mineralogy and Possible Sources of Spring Dust Particles over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 395-403.  doi: 10.1007/s00376-008-0395-8
    [9] DING Ting, QIAN Weihong, 2011: Geographical Patterns and Temporal Variations of Regional Dry and Wet Heatwave Events in China during 1960--2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 322-337.  doi: 10.1007/s00376-010-9236-7
    [10] Meng CUI, Xingqin AN, Li XING, Guohui LI, Guiqian TANG, Jianjun HE, Xin LONG, Shuman ZHAO, 2021: Simulated Sensitivity of Ozone Generation to Precursors in Beijing during a High O3 Episode, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1223-1237.  doi: 10.1007/s00376-021-0270-4
    [11] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [12] Chuanjie YANG, Guang LI, Lijuan YAN, Weiwei MA, Jiangqi WU, Yan TAN, Shuainan LIU, Shikang ZHANG, 2022: Effects of Plant Community Type on Soil Methane Flux in Semiarid Loess Hilly Region, Central Gansu Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1360-1374.  doi: 10.1007/s00376-022-1169-4
    [13] Nan WANG, Zhenhao LING, Xuejiao DENG, Tao DENG, Xiaopu LYU, Tingyuan LI, Xiaorong GAO, Xi CHEN, 2018: Source Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1145-1159.  doi: 10.1007/s00376-018-7212-9
    [14] Lan GAO, Xu YUE, Xiaoyan MENG, Li DU, Yadong LEI, Chenguang TIAN, Liang QIU, 2020: Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1297-1309.  doi: 10.1007/s00376-020-0054-2
    [15] Chuwei LIU, Zhongwei HUANG, Jianping HUANG, Chunsheng LIANG, Lei DING, Xinbo LIAN, Xiaoyue LIU, Li Zhang, Danfeng WANG, 2022: Comparison of PM2.5 and CO2 Concentrations in Large Cities of China during the COVID-19 Lockdown, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 861-875.  doi: 10.1007/s00376-021-1281-x
    [16] Bin LIU, Zhenghui XIE, Peihua QIN, Shuang LIU, Ruichao LI, Longhuan WANG, Yan WANG, Binghao JIA, Si CHEN, Jinbo XIE, Chunxiang SHI, 2021: Increases in Anthropogenic Heat Release from Energy Consumption Lead to More Frequent Extreme Heat Events in Urban Cities, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 430-445.  doi: 10.1007/s00376-020-0139-y
    [17] Zexuan WANG, Hongmei XU, Rong FENG, Yunxuan GU, Jian SUN, Suixin LIU, Ningning ZHANG, Dan LI, Tao WANG, Linli QU, Steven Sai Hang HO, Zhenxing SHEN, Junji CAO, 2023: Characteristics of PM2.5 and Its Reactive Oxygen Species in Heating Energy Transition and Estimation of Its Impact on the Environment and Health in China—A Case Study in the Fenwei Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1175-1186.  doi: 10.1007/s00376-022-2249-1
    [18] Roeland Cornelis JANSEN, SHI Yang, CHEN Jianmin, HU YunJie, XU Chang, HONG Shengmao, LI Jiao, ZHANG Min, 2014: Using Hourly Measurements to Explore the Role of Secondary Inorganic Aerosol in PM2.5 during Haze and Fog in Hangzhou, China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1427-1434.  doi: 10.1007/s00376-014-4042-2
    [19] Xiao HAN, Meigen ZHANG, 2021: The Interannual Variation of Transboundary Contributions from Chinese Emissions of PM2.5 to South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 701-706.  doi: 10.1007/s00376-021-1003-4
    [20] Qian LU, Jian RAO, Chunhua SHI, Dong GUO, Ji WANG, Zhuoqi LIANG, Tian WANG, 2022: Observational Subseasonal Variability of the PM2.5 Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1623-1636.  doi: 10.1007/s00376-022-1393-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2010
Manuscript revised: 10 May 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Temporal Variability in Fine Carbonaceous Aerosol over Two Years in Two Megacities: Beijing and Toronto

  • 1. College of Earth Science, Graduate University of the Chinese Academy of Sciences, Beijing 100049, Atmospheric Science and Technology Directorate/Science and Technology Branch, Environment Canada, Toronto, ON M3H 5T4, Canada,Atmospheric Science and Technology Directorate/Science and Technology Branch, Environment Canada, Toronto, ON M3H 5T4, Canada,Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084,Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 and Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084

Abstract: Time-series of weekly total carbon (TC) concentrations of fine aerosol particles (PM2.5 in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003. In addition to this comparison, differences in the factors contributing to the observed concentrations and their temporal variations are discussed. Based upon past knowledge about the two megacities with highly contrasting air pollutant levels, it is not surprising that the average TC concentration in Beijing (31.5 μg C m-3) was greater than that in Toronto by a factor of 8.3. Despite their large concentration differences, in both cities TC comprised a similarly large component of PM2.5. TC concentrations exhibited very different seasonal patterns between the two cities. In Beijing, TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result, the greatest gap in TC concentrations between Beijing and Toronto (by a factor of 12.7) occurred in winter, while the smallest gap (a factor of 4.6) was in summer. In Beijing, seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality, while in Toronto during the warm months more than 80% of the hourly winds were recorded from the south, along with many potential anthropogenic sources for the days with high TC concentrations. This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return