Advanced Search
Article Contents

Influence of Tropical Cyclone Landfalls on Spatiotemporal Variations in Typhoon Season Rainfall over South China


doi: 10.1007/s00376-009-9106-3

  • This study examined the impact of tropical cyclone (TC) landfalls on the spatiotemporal variations in the rainfall over South China for the period 1957--2005. The target region was selected to show the noteworthy contribution of TC landfalls to the total rainfall during the typhoon season (July--October). Two prevailing spatial variations in the rainfall were obtained from an EOF analysis. The first EOF mode displays single-sign variability over South China with an explained variance of 23.4%. The associated time series of this mode fluctuates on a decadal timescale and was found to be correlated with TC genesis in the South China Sea. The second EOF mode shows a seesaw pattern between Hainan Island/Guangdong Province and the remaining regions with an explained variance of 11.4%. This seesaw pattern results from an anti-correlation in seasonal TC landfalls between the two regions, which was found in previous studies. This is related to the strengthening (weakening) of the upper tropospheric jets and the corresponding development of a massive anticyclonic (cyclonic) circulation over East Asia. The EOF analysis was also conducted using just the data for rainfall caused by landfalling TCs. This revealed that the first EOF mode using just the TC-induced rainfall is nearly identical to the second mode from the total rainfall. The obvious seesaw pattern of the first mode when employing just the TC-induced rainfall in the EOF analysis implies that this pattern has larger temporal variability than the single-signed pattern (i.e., the first EOF mode using the total rainfall) in terms of TC landfalls. This study suggests that TC landfalls over South China and the accompanying rainfall significantly modulate the spatial variation of the typhoon season rainfall there.
  • [1] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [2] Se-Hwan YANG, LI Chaofan, and LU Riyu, 2014: Predictability of Winter Rainfall in South China as Demonstrated by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 779-786.  doi: 10.1007/s00376-013-3172-2
    [3] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [4] Jian YUE, Zhiyong MENG, Cheng-Ku YU, Lin-Wen CHENG, 2017: Impact of Coastal Radar Observability on the Forecast of the Track and Rainfall of Typhoon Morakot (2009) Using WRF-based Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 66-78.  doi: 10.1007/s00376-016-6028-8
    [5] Shenming FU, Jingping ZHANG, Yali LUO, Wenying YANG, Jianhua SUN, 2022: Energy Paths that Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1519-1535.  doi: 10.1007/s00376-021-1336-z
    [6] Jianhua SUN, Yuanchun ZHANG, Ruixin LIU, Shenming FU, Fuyou TIAN, 2019: A Review of Research on Warm-Sector Heavy Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1299-1307.  doi: 10.1007/s00376-019-9021-1
    [7] Lingyun LOUSchool, of Earth, Zhejiang University, Xiaofan LISchool, 2016: Radiative Effects on Torrential Rainfall during the Landfall of Typhoon Fitow (2013), ADVANCES IN ATMOSPHERIC SCIENCES, 33, 101-109.  doi: 10.1007/s00376-015-5139-y
    [8] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [9] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [10] YE Hong, LU Riyu, 2012: Dominant Patterns of Summer Rainfall Anomalies in East China during 1951--2006, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 695-704.  doi: 10.1007/s00376-012-1153-5
    [11] MA Leiming, DUAN Yihong, ZHU Yongti, 2004: The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 951-963.  doi: 10.1007/BF02915597
    [12] QIN Xiaohao, MU Mu, 2014: Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 252-262.  doi: 10.1007/s00376-013-3008-0
    [13] HUANG Hong, JIANG Yongqiang, CHEN Zhongyi, LUO Jian, WANG Xuezhong, 2014: Effect of Tropical Cyclone Intensity and Instability on the Evolution of Spiral Bands, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1090-1100.  doi: 10.1007/s00376-014-3108-5
    [14] Yu DU, Yian SHEN, Guixing CHEN, 2022: Influence of Coastal Marine Boundary Layer Jets on Rainfall in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 782-801.  doi: 10.1007/s00376-021-1195-7
    [15] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [16] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6
    [17] Linbin He, Weiyi Peng, Yu Zhang, Shiguang Miao, Siqi Chen, Jiajing Li, Duanzhou Shao, Xutao Zhang, 2024: Comparison of Adaptive Simulation Observation Experiments of the Heavy Rainfall in South China and Sichuan Basin, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3114-1
    [18] Fei WANG, Lifang SHENG, Xiadong AN, Haixia ZHOU, Yingying ZHANG, Xiaodong LI, Yigeng DING, Jing YANG, 2022: The Impact of an Abnormal Zonal Vertical Circulation in Autumn of Super El Niño Years on Non-tropical-cyclone Heavy Rainfall over Hainan Island, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1914-1924.  doi: 10.1007/s00376-022-1388-8
    [19] ZHAI Guoqing, LI Xiaofan, ZHU Peijun, SHEN Hangfeng, ZHANG Yuanzhi, 2014: Surface Rainfall and Cloud Budgets Associated with Mei-yu Torrential Rainfall over Eastern China during June 2011, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1435-1444.  doi: 10.1007/s00376-014-3256-7
    [20] REN Baohua, LU Riyu, XIAO Ziniu, 2004: A Possible Linkage in the Interdecadal Variability of Rainfall over North China and the Sahel, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 699-707.  doi: 10.1007/BF02916367

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2010
Manuscript revised: 10 March 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Influence of Tropical Cyclone Landfalls on Spatiotemporal Variations in Typhoon Season Rainfall over South China

  • 1. Computational Science and Technology, Seoul National University, Seoul, Korea,rainfall, tropical cyclone, South China, typhoon season,Met Office Hadley Centre, Exeter, United Kingdom

Abstract: This study examined the impact of tropical cyclone (TC) landfalls on the spatiotemporal variations in the rainfall over South China for the period 1957--2005. The target region was selected to show the noteworthy contribution of TC landfalls to the total rainfall during the typhoon season (July--October). Two prevailing spatial variations in the rainfall were obtained from an EOF analysis. The first EOF mode displays single-sign variability over South China with an explained variance of 23.4%. The associated time series of this mode fluctuates on a decadal timescale and was found to be correlated with TC genesis in the South China Sea. The second EOF mode shows a seesaw pattern between Hainan Island/Guangdong Province and the remaining regions with an explained variance of 11.4%. This seesaw pattern results from an anti-correlation in seasonal TC landfalls between the two regions, which was found in previous studies. This is related to the strengthening (weakening) of the upper tropospheric jets and the corresponding development of a massive anticyclonic (cyclonic) circulation over East Asia. The EOF analysis was also conducted using just the data for rainfall caused by landfalling TCs. This revealed that the first EOF mode using just the TC-induced rainfall is nearly identical to the second mode from the total rainfall. The obvious seesaw pattern of the first mode when employing just the TC-induced rainfall in the EOF analysis implies that this pattern has larger temporal variability than the single-signed pattern (i.e., the first EOF mode using the total rainfall) in terms of TC landfalls. This study suggests that TC landfalls over South China and the accompanying rainfall significantly modulate the spatial variation of the typhoon season rainfall there.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return