Advanced Search
Article Contents

Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data


doi: 10.1007/s00376-009-9133-0

  • Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA's Advanced Very High Resolution Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.
  • [1] Fangfang HUANG, Weiqiang MA, Binbin WANG, Zeyong HU, Yaoming MA, Genhou SUN, Zhipeng XIE, Yun LIN, 2017: Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 650-662.  doi: 10.1007/s00376-016-6152-5
    [2] MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang, 2012: The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 47-53.  doi: 10.1007/s00376-011-1008-5
    [3] Xuehua FAN, Xiang'ao XIA, Hongbin CHEN, 2018: Can MODIS Detect Trends in Aerosol Optical Depth over Land?, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 135-145.  doi: 10.1007/s00376-017-7017-2
    [4] Xiao ZHANG, Saichun TAN, Guangyu SHI, 2018: Comparison between MODIS-derived Day and Night Cloud Cover and Surface Observations over the North China Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 146-157.  doi: 10.1007/s00376-017-7070-x
    [5] Lian LIU, Massimo MENENTI, Yaoming MA, Weiqiang MA, 2022: Improved Parameterization of Snow Albedo in WRF + Noah: Methodology Based on a Severe Snow Event on the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1079-1102.  doi: 10.1007/s00376-022-1232-1
    [6] YAO Zhigang, Jun LI, ZHAO Zengliang, 2015: Synergistic Use of AIRS and MODIS for Dust Top Height Retrieval over Land, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 470-476.  doi: 10.1007/s00376-014-4046-y
    [7] Sijie CHEN, Shuaibo WANG, Lin SU, Changzhe DONG, Ju KE, Zhuofan ZHENG, Chonghui CHENG, Bowen TONG, Dong LIU, 2020: Optimization of the OCO-2 Cloud Screening Algorithm and Evaluation against MODIS and TCCON Measurements over Land Surfaces in Europe and Japan, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 387-398.  doi: 10.1007/s00376-020-9160-4
    [8] Yunfei FU, Jiachen ZHU, Yuanjian YANG, Renmin YUAN, Guosheng LIU, Tao XIAN, Peng LIU, 2017: Grid-cell Aerosol Direct Shortwave Radiative Forcing Calculated Using the SBDART Model with MODIS and AERONET Observations: An Application in Winter and Summer in Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 952-964.  doi: 10.1007/s00376-017-6226-z
    [9] Jie ZHANG, Jinyuan Xin, Wenyu ZHANG, Shigong WANG, Lili WANG, Wei XIE, Guojie XIAO, Hela PAN, Lingbin KONG, 2017: Validation of MODIS C6 AOD Products Retrieved by the Dark Target Method in the Beijing-Tianjin-Hebei Urban Agglomeration, China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 993-1002.  doi: 10.1007/s00376-016-6217-5
    [10] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [11] Jiang Hao, Wang Keli, 2001: Analysis of the Surface Temperature on the Tibetan Plateau from Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1215-1223.  doi: 10.1007/s00376-001-0035-z
    [12] WANG Leidi, LÜ Daren, HE Qing, 2015: The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 759-771.  doi: 10.1007/s00376-014-4131-2
    [13] LI Ying, HU Zeyong, 2009: A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 161-168.  doi: 10.1007/s00376-009-0161-6
    [14] Li Guo ping, Lu Jinghua, Jin Bingling, Bu Nima, 2001: The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1207-1214.  doi: 10.1007/s00376-001-0034-0
    [15] YANG Kun, Toshio KOIKE, 2008: Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 974-985.  doi: 10.1007/s00376-008-0974-8
    [16] Liu Huizhi, Zhang Hongsheng, Bian Lin'gen, Chen Jiayi, Zhou Mingyu, Xu Xiangde, Li Shiming, Zhao Yijun, 2002: Characteristics of Micrometeorology in the Surface Layer in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 73-88.  doi: 10.1007/s00376-002-0035-7
    [17] WANG Hesong, JIA Gensuo, 2013: Regional Estimates of Evapotranspiration over Northern China Using a Remote-sensing-based Triangle Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1479-1490.  doi: 10.1007/s00376-013-2294-x
    [18] Xiaolei CHEN, Yimin LIU, Guoxiong WU, 2017: Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1447-1460.  doi: 10.1007s00376-017-6326-9
    [19] Binghao JIA, Xin LUO, Longhuan WANG, Xin LAI, 2023: Changes in Water Use Efficiency Caused by Climate Change, CO2 Fertilization, and Land Use Changes on the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 144-154.  doi: 10.1007/s00376-022-2172-5
    [20] Anmin DUAN, Ruizao SUN, Jinhai HE, 2017: Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 157-168.  doi: 10.1007/s00376-016-6008-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2010
Manuscript revised: 10 September 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data

  • 1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede 7514 AE, Netherlands, Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610071,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou 730000,Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede 7514AE, Netherlands,Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede 7514AE, Netherlands

Abstract: Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA's Advanced Very High Resolution Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return