Advanced Search
Article Contents

Changes in Seasonal Cycle and Extremes in China during the Period 1960--2008


doi: 10.1007/s00376-010-0006-3

  • Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960--2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2--6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2oC--0.4oC (10 yr)-1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2--4 d (10 yr)-1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1oC--0.2oC (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer.
  • [1] DONG Siyan, XU Ying, ZHOU Botao, SHI Ying, 2015: Assessment of Indices of Temperature Extremes Simulated by Multiple CMIP5 Models over China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1077-1091.  doi: 10.1007/s00376-015-4152-5
    [2] Peihua QIN, Zhenghui XIE, Rui HAN, Buchun LIU, 2024: Evaluation and Projection of Population Exposure to Temperature Extremes over the Beijing−Tianjin−Hebei Region Using a High-Resolution Regional Climate Model RegCM4 Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3123-5
    [3] Wenxia ZHANG, Robin CLARK, Tianjun ZHOU, Laurent LI, Chao LI, Juan RIVERA, Lixia ZHANG, Kexin GUI, Tingyu ZHANG, Lan LI, Rongyun PAN, Yongjun CHEN, Shijie TANG, Xin HUANG, Shuai HU, 2024: 2023: Weather and Climate Extremes Hitting the Globe with Emerging Features, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-4080-3
    [4] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [5] Buwen DONG, Rowan T. SUTTON, Wei CHEN, Xiaodong LIU, Riyu LU, Ying SUN, 2016: Abrupt Summer Warming and Changes in Temperature Extremes over Northeast Asia Since the Mid-1990s: Drivers and Physical Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1005-1023.  doi: 10.1007/s00376-016-5247-3
    [6] HUANG Danqing, QIAN Yongfu, ZHU Jian, 2010: Trends of Temperature Extremes in China and its Relationship with Global temperature anomalies Relationship with Global Temperature Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 937-946.  doi: 10.1007/s00376-009-9085-4
    [7] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [8] WANG Jun, BAO Qing, Ning ZENG, LIU Yimin, WU Guoxiong, JI Duoying, 2013: Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1549-1559.  doi: 10.1007/s00376-013-2169-1
    [9] GUO Zhun, ZHOU Tianjun, 2015: Seasonal Variation and Physical Properties of the Cloud System over Southeastern China Derived from CloudSat Products, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 659-670.  doi: 10.1007/s00376-014-4070-y
    [10] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2
    [11] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y
    [12] LI Hongmei, ZHOU Tianjun, Jae-Cheol NAM, 2009: Comparison of Daily Extreme Temperatures over Eastern China and South Korea between 1996--2005, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 253-264.  doi: 10.1007/s00376-009-0253-3
    [13] Kate M. WILLETT, 2023: HadISDH.extremes Part II: Exploring Humid Heat Extremes Using Wet Bulb Temperature Indices, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1968-1985.  doi: 10.1007/s00376-023-2348-7
    [14] Kate M. WILLETT, 2023: HadISDH.extremes Part I: A Gridded Wet Bulb Temperature Extremes Index Product for Climate Monitoring, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1952-1967.  doi: 10.1007/s00376-023-2347-8
    [15] LIN Pengfei, LIU Hailong, YU Yongqiang, ZHANG Xuehong, 2011: Response of Sea Surface Temperature to Chlorophyll-a Concentration in the Tropical Pacific: Annual Mean, Seasonal Cycle, and Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 492-510.  doi: 10.1007/s00376-010-0015-2
    [16] Ya WANG, Gang HUANG, Baoxiang PAN, Pengfei LIN, Niklas BOERS, Weichen TAO, Yutong CHEN, BO LIU, Haijie LI, 2024: Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks: Climatology, Interannual Variability, and Extremes, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3288-6
    [17] Maeng-Ki KIM, Yeon-Hee KIM, 2010: Seasonal Prediction of Monthly Precipitation in China Using Large-Scale Climate Indices, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 47-59.  doi: 10.1007/s00376-009-8014-x
    [18] Jeong-Hyeong LEE, Byungsoo KIM, Keon-Tae SOHN, Won-Tae KOWN, Seung-Ki MIN, 2005: Climate Change Signal Analysis for Northeast Asian Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 159-171.  doi: 10.1007/BF02918506
    [19] Peihua QIN, Zhenghui XIE, Jing ZOU, Shuang LIU, Si CHEN, 2021: Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 460-479.  doi: 10.1007/s00376-020-0141-4
    [20] FAN Lijun, Deliang CHEN, FU Congbin, YAN Zhongwei, 2013: Statistical downscaling of summer temperature extremes in northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1085-1095.  doi: 10.1007/s00376-012-2057-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2011
Manuscript revised: 10 March 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Changes in Seasonal Cycle and Extremes in China during the Period 1960--2008

  • 1. Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Regional Climate-Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Sciences, Beijing 100049, School of Energy and Environment, Guy Carpenter Asia-Pacific Climate Centre, City University of Hong Kong, Hong Kong,Key Laboratory of Regional Climate-Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,School of Energy and Environment, Guy Carpenter Asia-Pacific Climate Centre, City University of Hong Kong, Hong Kong

Abstract: Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960--2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2--6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2oC--0.4oC (10 yr)-1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2--4 d (10 yr)-1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1oC--0.2oC (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return