Advanced Search
Article Contents

Transient Characteristics of Residual Meridional Circulation during Stratospheric Sudden Warming


doi: 10.1007/s00376-010-0010-7

  • The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts, the slowly varying diabatic circulation and the transient circulation, as demonstrated by others. We calculated and composite-analyzed the transient and diabatic circulation for 14 stratospheric sudden warming (SSW) events from 1979--2002 by using the daily ECMWF reanalysis data. Specifically, the transient residual meridional circulation was calculated both with and without inclusion of the eddy heat transport term in the transformed Eulerian-mean thermodynamic equation to investigate the importance of the eddy heat transport term. The results showed that calculations of transient residual meridional circulation present rapid variations during SSWs, with or without inclusion of the eddy heat transport term. Although the patterns of transient residual meridional circulation with the eddy heat transport term were similar to that without the eddy heat transport term during SSW, the magnitudes in the upper stratosphere and high-latitude regions differed. As for the diabatic circulation, its daily variations were small during SSW events, and its patterns were in agreement with its monthly average.
  • [1] DENG Shumei, CHEN Yuejuan, LUO Tao, BI Yun, ZHOU Houfu, 2008: The Possible Influence of Stratospheric Sudden Warming on East Asian Weather, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 841-846.  doi: 10.1007/s00376-008-0841-7
    [2] ZUO Qunjie, GAO Shouting, LU Daren, 2012: Kinetic and Available Potential Energy Transport during the Stratospheric Sudden Warming in January 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1343-1359.  doi: 10.1007/s00376-012-1198-5
    [3] Jian RAO, Rongcai REN, Haishan CHEN, Xiangwen LIU, Yueyue YU, Yang YANG, 2019: Sub-seasonal to Seasonal Hindcasts of Stratospheric Sudden Warming by BCC_CSM1.1(m): A Comparison with ECMWF, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 479-494.  doi: 10.1007/s00376-018-8165-8
    [4] Yingxian ZHANG, Dong SI, Yihui DING, Dabang JIANG, Qingquan LI, Guofu WANG, 2022: Influence of Major Stratospheric Sudden Warming on the Unprecedented Cold Wave in East Asia in January 2021, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 576-590.  doi: 10.1007/s00376-022-1318-9
    [5] Yueyue YU, Yafei LI, Rongcai REN, Ming CAI, Zhaoyong GUAN, Wei HUANG, 2022: An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 643-657.  doi: 10.1007/s00376-021-1289-2
    [6] LIU Yi, LIU Chuanxi, Xuexi TIE, GAO Shouting, 2011: Middle Stratospheric Polar Vortex Ozone Budget during the Warming Arctic Winter, 2002--2003, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 985-996.  doi: 10.1007/s00376-010-0045-9
    [7] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2022: Reexamination of the Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1956-1968.  doi: 10.1007/s00376-022-1450-6
    [8] WANG Zhifu, QIAN Yongfu, 2009: The Relationship of Land-Ocean Thermal Anomaly Difference with Mei-yu and South China Sea Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 169-179.  doi: 10.1007/s00376-009-0169-y
    [9] Mengchu TAO, Yi LIU, Yuli ZHANG, 2017: Variation in Brewer-Dobson Circulation During Three Sudden Stratospheric Major Warming Events in the 2000s, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1415-1425.  doi: 10.1007/s00376-017-6321-1
    [10] Xiaohua XU, Daocheng YU, Jia LUO, 2018: The Spatial and Temporal Variability of Global Stratospheric Gravity Waves and Their Activity during Sudden Stratospheric Warming Revealed by COSMIC Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1533-1546.  doi: 10.1007/s00376-018-5053-1
    [11] Yuanpu LI, Wenshou TIAN, 2017: Different Impact of Central Pacific and Eastern Pacific El Niño on the Duration of Sudden Stratospheric Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 771-782.  doi: 10.1007/s00376-017-6286-0
    [12] Jian RAO, Siming LIU, Yuanhao CHEN, 2021: Northern Hemisphere Sudden Stratospheric Warming and Its Downward Impact in Four Chinese CMIP6 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 187-202.  doi: 10.1007/s00376-020-0250-0
    [13] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [14] Qian LU, Jian RAO, Chunhua SHI, Dong GUO, Ji WANG, Zhuoqi LIANG, Tian WANG, 2022: Observational Subseasonal Variability of the PM2.5 Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1623-1636.  doi: 10.1007/s00376-022-1393-y
    [15] Y. L. McHall, 1992: Wintertime Stratospheric Anomalies-Part II: Sudden Warmings, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 311-322.  doi: 10.1007/BF02656941
    [16] Liu Ping, Wu Guoxiong, Sun Shufen, 2001: Local Meridional Circulation and Deserts, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 864-872.
    [17] A.B. Sikder, S.K. Patwardhan, H.N. Bhalme, 1993: Tropical Stratospheric Circulation and Monsoon Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 379-385.  doi: 10.1007/BF02658143
    [18] Masakazu TAGUCHI, 2020: Verification of Subseasonal-to-Seasonal Forecasts for Major Stratospheric Sudden Warmings in Northern Winter from 1998/99 to 2012/13, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 250-258.  doi: 10.1007/s00376-019-9195-6
    [19] Jintao ZHANG, Qinglong YOU, Fangying WU, Ziyi CAI, Nick PEPIN, 2022: The Warming of the Tibetan Plateau in Response to Transient and Stabilized 2.0°C/1.5°C Global Warming Targets, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1198-1206.  doi: 10.1007/s00376-022-1299-8
    [20] Xun Zhu, 1988: A STEADY TWO-DIMENSIONAL CLIMATE MODEL WITH RESIDUAL CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 455-468.  doi: 10.1007/BF02656791

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2011
Manuscript revised: 10 May 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Transient Characteristics of Residual Meridional Circulation during Stratospheric Sudden Warming

  • 1. Anhui Institute of Meteorological Sciences, Hefei 230031,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230031,Anhui Institute of Meteorological Sciences, Hefei 230031,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230031,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230031

Abstract: The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts, the slowly varying diabatic circulation and the transient circulation, as demonstrated by others. We calculated and composite-analyzed the transient and diabatic circulation for 14 stratospheric sudden warming (SSW) events from 1979--2002 by using the daily ECMWF reanalysis data. Specifically, the transient residual meridional circulation was calculated both with and without inclusion of the eddy heat transport term in the transformed Eulerian-mean thermodynamic equation to investigate the importance of the eddy heat transport term. The results showed that calculations of transient residual meridional circulation present rapid variations during SSWs, with or without inclusion of the eddy heat transport term. Although the patterns of transient residual meridional circulation with the eddy heat transport term were similar to that without the eddy heat transport term during SSW, the magnitudes in the upper stratosphere and high-latitude regions differed. As for the diabatic circulation, its daily variations were small during SSW events, and its patterns were in agreement with its monthly average.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return