Advanced Search
Article Contents

On the Evolution and Structure of a Radiation Fog Event in Nanjing


doi: 10.1007/s00376-010-0017-0

  • An extremely dense radiation fog event during 10--11 December 2007 was studied to understand its macro-/micro-physics in relation to dynamic and thermodynamic structures of the boundary layer, as well as its structural evolution in conjunction with the air-surface exchange of heat and water vapor. The findings are as follows. The extreme radiation fog process was divisible into formation, development, mature, and dissipation phases, depending on microstructure and visibility. This fog event was marked by rapid evolution that occurred after sunrise, when enhanced surface evaporation and cold air intrusion led to a three order of magnitude increase in liquid water content (LWC) in just 20 minutes. The maximum droplet diameter (MDD) increased four-fold during the same period. The fog structure was two-layered, with the top of both the surface-layer and upper-layer components characterized by strong temperature and humidity inversions, and low-level jets existed in the boundary layer above each fog layer. Turbulence intensity, turbulent kinetic energy, and friction velocity differed remarkably from phase to phase: these features increased gradually before the fog formation and decreased during the development phase; during the mature and dissipation phases these characteristics increased and then decreased again. In the development and mature stages, the mean kinetic energy of the lower-level winds decreased pronouncedly, both in the horizontal and vertical directions.
  • [1] Li Xin, Hu Fei, Pu Yifen, M.H.Al-Jiboori, Hu Zhaoxia, Hong Zhongxiang, 2002: Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 687-698.  doi: 10.1007/s00376-002-0008-x
    [2] Yu SHI, Qingcun ZENG, Fei HU, Weichen DING, Zhe ZHANG, Kang ZHANG, Lei LIU, 2023: Different Turbulent Regimes and Vertical Turbulence Structures of the Urban Nocturnal Stable Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1089-1103.  doi: 10.1007/s00376-022-2198-8
    [3] Yawei QU, Tijian WANG, Yanfeng CAI, Shekou WANG, Pulong CHEN, Shu LI, Mengmeng LI, Cheng YUAN, Jing WANG, Shaocai XU, 2018: Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1381-1395.  doi: 10.1007/s00376-018-8027-4
    [4] LIU Hongnian, JIANG Weimei, HUANG Jian, MAO Weikang, 2011: Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1377-1389.  doi: 10.1007/s00376-011-0191-8
    [5] CHENG Xue-Ling, HUANG Jian, WU Lin, ZENG Qing-Cun, 2015: Structures and Characteristics of the Windy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 772-782.  doi: 10.1007/s00376-014-4228-7
    [6] Paul D. WILLIAMS, 2017: Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 576-586.  doi: 10.1007/s00376-017-6268-2
    [7] Peter SHERIDAN, Anlun XU, Jian LI, Kalli FURTADO, 2023: Use of Targeted Orographic Smoothing in Very High Resolution Simulations of a Downslope Windstorm and Rotor in a Sub-tropical Highland Location, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2043-2062.  doi: 10.1007/s00376-023-2298-0
    [8] Yang HE, Xiaoqian ZHU, Zheng SHENG, Wei GE, Xiaoran ZHAO, Mingyuan HE, 2022: Atmospheric Disturbance Characteristics in the Lower-middle Stratosphere Inferred from Observations by the Round-Trip Intelligent Sounding System (RTISS) in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 131-144.  doi: 10.1007/s00376-021-1110-2
    [9] P. VINAY KUMAR, Gopa DUTTA, M.V. RATNAM, E. KRISHNA, B. BAPIRAJU, B. Venkateswara RAO, Salauddin MOHAMMAD, 2016: Impact of Cyclone Nilam on Tropical Lower Atmospheric Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 955-968.  doi: 10.1007/s00376-016-5285-x
    [10] LI Wanli, LU Shihua, FU Shenming, MENG Xianhong, H. C. NNAMCHI, 2011: Numerical Simulation of Fluxes Generated by Inhomogeneities of the Underlying Surface over the Jinta Oasisin Northwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 887-906.  doi: 10.1007/s00376-010-0041-0
    [11] HU Yongyun, 2007: Probability Distribution Function of a Forced Passive Tracer in the Lower Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 163-180.  doi: 10.1007/s00376-007-0163-1
    [12] Liu Shikuo, Peng Weihong, Huang Feng, Chi Dongyan, 2002: Effects of Turbulent Dispersion on the Wind Speed Profile in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 794-806.  doi: 10.1007/s00376-002-0045-5
    [13] Zhida HUANG, Hailong LIU, Pengfei LIN, Jianyu HU, 2017: Influence of Island Chains on the Kuroshio Intrusion in the Luzon Strait, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 397-410.  doi: 10.1007/s00376-016-6159-y
    [14] Xiaoyu REN, Yi LIU, Zhaonan CAI, Yuli ZHANG, 2022: Observations of Dynamic Turbulence in the Lower Stratosphere over Inner Mongolia Using a High-resolution Balloon Sensor Constant Temperature Anemometer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 519-528.  doi: 10.1007/s00376-021-1233-5
    [15] Zhida HUANG, Hailong LIU, Jianyu HU, Pengfei LIN, 2016: A Double-Index Method to Classify Kuroshio Intrusion Paths in the Luzon Strait, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 715-729.  doi: 10.1007/s00376-015-5171-y
    [16] ZHU Bin, WANG Honglei, SHEN Lijuan, KANG Hanqing, YU Xingna, 2013: Aerosol Spectra and New Particle Formation Observed in Various Seasons in Nanjing, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1632-1644.  doi: 10.1007/s00376-013-2202-4
    [17] ZHOU Yushu, DENG Guo, LEI Ting, JU Jianhua, 2005: The Thermodynamic and Dynamical Features of Double Front Structures During 21-31 July 1998 in China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 924-935.  doi: 10.1007/BF02918691
    [18] Liu Shida, Liu Shikuo, Xin Guojun, Liang Fuming, 1994: The Theoretical Model of Atmospheric Turbulence Spectrum in Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 408-414.  doi: 10.1007/BF02658160
    [19] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [20] Huang Yao, Jiang Jingyan, Zong Lianggang, Ronald L. Sass, Frank M. Fisher, 2001: Comparison of Field Measurements of CH4 Emission from Rice Cultivation in Nanjing, China and in Texas, USA, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1121-1130.  doi: 10.1007/s00376-001-0027-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2011
Manuscript revised: 10 January 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On the Evolution and Structure of a Radiation Fog Event in Nanjing

  • 1. Key Laboratory for Atmospheric Physics and Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044,Key Laboratory for Atmospheric Physics and Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044,Key Laboratory for Atmospheric Physics and Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044,Key Laboratory for Atmospheric Physics and Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044

Abstract: An extremely dense radiation fog event during 10--11 December 2007 was studied to understand its macro-/micro-physics in relation to dynamic and thermodynamic structures of the boundary layer, as well as its structural evolution in conjunction with the air-surface exchange of heat and water vapor. The findings are as follows. The extreme radiation fog process was divisible into formation, development, mature, and dissipation phases, depending on microstructure and visibility. This fog event was marked by rapid evolution that occurred after sunrise, when enhanced surface evaporation and cold air intrusion led to a three order of magnitude increase in liquid water content (LWC) in just 20 minutes. The maximum droplet diameter (MDD) increased four-fold during the same period. The fog structure was two-layered, with the top of both the surface-layer and upper-layer components characterized by strong temperature and humidity inversions, and low-level jets existed in the boundary layer above each fog layer. Turbulence intensity, turbulent kinetic energy, and friction velocity differed remarkably from phase to phase: these features increased gradually before the fog formation and decreased during the development phase; during the mature and dissipation phases these characteristics increased and then decreased again. In the development and mature stages, the mean kinetic energy of the lower-level winds decreased pronouncedly, both in the horizontal and vertical directions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return