Advanced Search
Article Contents

The Significant Relationship between the Arctic Oscillation (AO) in December and the January Climate over South China


doi: 10.1007/s00376-010-0019-y

  • Using NCEP/NCAR reanalysis data, the China rainfall and surface temperature data of the China Meteorological Administration, and the Arctic Oscillation (AO) indices of NOAA, the author investigates relationships between the AO and the precipitation and temperature over China. There exists a good relationship between the AO index in December and the succeeding January precipitation over South China, indicating that when the December AO index is positive (negative), the January precipitation over South China increases (decreases). A remarkable negative correlation between the December AO index and the January surface temperature also exists over South China, indicating that when the December AO index is positive (negative), the January temperature over South China drops (rises). The occurrence of this anomalous climate is related to the anomalies of the atmospheric circulation systems. The December AO greatly influences circulation anomalies in January. A positive phase of the AO is found to lead to a stronger subtropical jet over the south side from the Iran Plateau to the Tibetan Plateau. Consequently, it results in a deepening pressure trough around the Bay of Bengal, which transports the warm and wet air to South China continuously. The Siberian High in January is stronger and extends farther southeastward. It results in continual cold air at 1000 hPa pouring into South China, inducing low temperature. Cooperating with the trough of the Bay of Bengal, anomalous precipitation occurs over South China. For the negative phase of the December AO, the opposite situation is observed.
  • [1] Laura DE LA TORRE, Luis GIMENO, Juan Antonio A\~NEL, Raquel NIETO, 2007: The Role of the Solar Cycle in the Relationship Between the North Atlantic Oscillation and Northern Hemisphere Surface Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 191-198.  doi: 10.1007/s00376-007-0191-x
    [2] HUANG Jiayou, TAN Benkui, SUO Lingling, HU Yongyun, 2007: Monthly Changes in the Influence of the Arctic Oscillation on Surface Air Temperature over China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 799-807.  doi: 10.1007/s00376-007-0799-x
    [3] YANG Hui, SUN Shuqing, 2005: The Characteristics of Longitudinal Movement of the Subtropical High in the Western Pacific in the Pre-rainy Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 392-400.  doi: 10.1007/BF02918752
    [4] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [5] LIU Chengji, REN Xuejuan*, and YANG Xiuqun, 2014: Mean FlowStorm Track Relationship and RossbyWave Breaking in Two Types of El-Nio, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 197-210.  doi: 10.1007/s00376-013-2297-7
    [6] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [7] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [8] Jong-Kil PARK, LU Riyu, LI Chaofan, Eun Byul KIM, 2012: Interannual Variation of Tropical Night Frequency in Beijing and Associated Large-Scale Circulation Background, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 295-306.  doi: 10.1007/s00376-011-1141-1
    [9] Pavla PEKAROVA, Jan PEKAR, 2007: Teleconnections of Inter-Annual Streamflow Fluctuation in Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, and Quasi-Biennial Oscillation Phenomena, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 655-663.  doi: 10.1007/s00376-007-0655-z
    [10] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [11] Yating ZHAO, Ming XUE, Jing JIANG, Xiao-Ming HU, Anning HUANG, 2024: Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 619-638.  doi: 10.1007/s00376-023-2353-x
    [12] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [13] LU Riyu, LI Ying, Buwen DONG, 2007: Arctic Oscillation and Antarctic Oscillation in Internal Atmospheric Variability with an Ensemble AGCM Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 152-162.  doi: 10.1007/s00376-007-0152-4
    [14] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7
    [15] Xiaoling YANG, Botao ZHOU, Ying XU, Zhenyu HAN, 2021: CMIP6 Evaluation and Projection of Temperature and Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 817-830.  doi: 10.1007/s00376-021-0351-4
    [16] SONG Lianchun, A. J. CANNON, P. H. WHITFIELD, 2007: Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 459-473.  doi: 10.1007/s00376-007-0459-1
    [17] Odd Helge OTTERA, 2008: Simulating the Effects of the 1991 Mount Pinatubo Volcanic Eruption Using the ARPEGE Atmosphere General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 213-226.  doi: 10.1007/s00376-008-0213-3
    [18] SHI Ning, and BUEH Cholaw, 2013: Three-dimensional dynamic features of two Arctic oscillation types, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1039-1052.  doi: 10.1007/s00376-012-2077-9
    [19] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [20] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2011
Manuscript revised: 10 March 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Significant Relationship between the Arctic Oscillation (AO) in December and the January Climate over South China

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Using NCEP/NCAR reanalysis data, the China rainfall and surface temperature data of the China Meteorological Administration, and the Arctic Oscillation (AO) indices of NOAA, the author investigates relationships between the AO and the precipitation and temperature over China. There exists a good relationship between the AO index in December and the succeeding January precipitation over South China, indicating that when the December AO index is positive (negative), the January precipitation over South China increases (decreases). A remarkable negative correlation between the December AO index and the January surface temperature also exists over South China, indicating that when the December AO index is positive (negative), the January temperature over South China drops (rises). The occurrence of this anomalous climate is related to the anomalies of the atmospheric circulation systems. The December AO greatly influences circulation anomalies in January. A positive phase of the AO is found to lead to a stronger subtropical jet over the south side from the Iran Plateau to the Tibetan Plateau. Consequently, it results in a deepening pressure trough around the Bay of Bengal, which transports the warm and wet air to South China continuously. The Siberian High in January is stronger and extends farther southeastward. It results in continual cold air at 1000 hPa pouring into South China, inducing low temperature. Cooperating with the trough of the Bay of Bengal, anomalous precipitation occurs over South China. For the negative phase of the December AO, the opposite situation is observed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return