Advanced Search
Article Contents

Time-Expanded Sampling for Ensemble-Based Filters: Assimilation Experiments with Real Radar Observations


doi: 10.1007/s00376-010-0021-4

  • By sampling perturbed state vectors from each ensemble prediction run at properly selected time levels in the vicinity of the analysis time, the recently proposed time-expanded sampling approach can enlarge the ensemble size without increasing the number of prediction runs and, hence, can reduce the computational cost of an ensemble-based filter. In this study, this approach is tested for the first time with real radar data from a tornadic thunderstorm. In particular, four assimilation experiments were performed to test the time-expanded sampling method against the conventional ensemble sampling method used by ensemble-based filters. In these experiments, the ensemble square-root filter (EnSRF) was used with 45 ensemble members generated by the time-expanded sampling and conventional sampling from 15 and 45 prediction runs, respectively, and quality-controlled radar data were compressed into super-observations with properly reduced spatial resolutions to improve the EnSRF performances. The results show that the time-expanded sampling approach not only can reduce the computational cost but also can improve the accuracy of the analysis, especially when the ensemble size is severely limited due to computational constraints for real-radar data assimilation. These potential merits are consistent with those previously demonstrated by assimilation experiments with simulated data.
  • [1] Lu ZHANG, Xiangjun TIAN, Hongqin ZHANG, Feng CHEN, 2020: Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 873-892.  doi: 10.1007/s00376-020-9274-8
    [2] Shibo GAO, Haiqiu YU, Chuanyou REN, Limin LIU, Jinzhong MIN, 2021: Assimilation of Doppler Radar Data with an Ensemble 3DEnVar Approach to Improve Convective Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 132-146.  doi: 10.1007/s00376-020-0081-z
    [3] ZHU Kefeng, YANG Yi, Ming XUE, 2015: Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1449-1459.  doi: 10.1007/s00376-015-5023-9
    [4] Zhaorong ZHUANG, Nusrat YUSSOUF, Jidong GAO, 2016: Analyses and Forecasts of a Tornadic Supercell Outbreak Using a 3DVAR System Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 544-558.  doi: 10.1007/s00376-015-5072-0
    [5] Yujie PAN, Mingjun WANG, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 160-172.  doi: 10.1007/s00376-018-8087-5
    [6] Jian YUE, Zhiyong MENG, Cheng-Ku YU, Lin-Wen CHENG, 2017: Impact of Coastal Radar Observability on the Forecast of the Track and Rainfall of Typhoon Morakot (2009) Using WRF-based Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 66-78.  doi: 10.1007/s00376-016-6028-8
    [7] ZHANG Shuwen, LI Deqin, QIU Chongjian, 2011: A Multimodel Ensemble-based Kalman Filter for the Retrieval of Soil Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 195-206.  doi: 10.1007/s00376-010-9200-6
    [8] Kefeng ZHU, Ming XUE, Yujie PAN, Ming HU, Stanley G. BENJAMIN, Stephen S. WEYGANDT, Haidao LIN, 2019: The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1308-1326.  doi: 10.1007/s00376-019-9011-3
    [9] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [10] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [11] CUI Limei, SUN Jianhua, QI Linlin, LEI Ting, 2011: Application of ATOVS Radiance-Bias Correction to Typhoon Track Prediction with Ensemble Kalman Filter Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 178-186.  doi: 10.1007/s00376-010-9145-9
    [12] Zhaoxia PU, Joshua HACKER, 2009: Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 373-380.  doi: 10.1007/s00376-009-0373-9
    [13] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [14] Jidong GAO, Keith BREWSTER, Ming XUE, 2006: A Comparison of the Radar Ray Path Equations and Approximations for Use in Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 190-198.  doi: 10.1007/s00376-006-0190-3
    [15] Yong LI, Siming LI, Yao SHENG, Luheng WANG, 2018: Data Assimilation Method Based on the Constraints of Confidence Region, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 334-345.  doi: 10.1007/s00376-017-7045-y
    [16] ZHENG Xiaogu, WU Guocan, ZHANG Shupeng, LIANG Xiao, DAI Yongjiu, LI Yong, , 2013: Using Analysis State to Construct a Forecast Error Covariance Matrix in Ensemble Kalman Filter Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1303-1312.  doi: 10.1007/s00376-012-2133-5
    [17] Lili LEI, Yangjinxi GE, Zhe-Min TAN, Yi ZHANG, Kekuan CHU, Xin QIU, Qifeng QIAN, 2022: Evaluation of a Regional Ensemble Data Assimilation System for Typhoon Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1816-1832.  doi: 10.1007/s00376-022-1444-4
    [18] LIU Hongya, XUE Jishan, GU Jianfeng, XU Haiming, 2012: Radar Data Assimilation of the GRAPES Model and Experimental Results in a Typhoon Case, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 344-358.  doi: 10.1007/s00376-011-1063-y
    [19] REN Liliang, LI Chunhong, WANG Meirong, 2003: Application of Radar-Measured Rain Data in Hydrological Processes Modeling during the Intensified Observation Period of HUBEX, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 205-211.  doi: 10.1007/s00376-003-0005-8
    [20] LIU Ye, YAN Changxiang, 2010: Application of a Recursive Filter to a Three-Dimensional Variational Ocean Data Assimilation System, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 293-302.  doi: 10.1007/s00376-009-8112-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Time-Expanded Sampling for Ensemble-Based Filters: Assimilation Experiments with Real Radar Observations

  • 1. Research Center for Numerical Prediction, China Meteorological Administration, Beijing 100081,NOAA/National Severe Storms Laboratory, Norman, Oklahoma, USA,Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, USA,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: By sampling perturbed state vectors from each ensemble prediction run at properly selected time levels in the vicinity of the analysis time, the recently proposed time-expanded sampling approach can enlarge the ensemble size without increasing the number of prediction runs and, hence, can reduce the computational cost of an ensemble-based filter. In this study, this approach is tested for the first time with real radar data from a tornadic thunderstorm. In particular, four assimilation experiments were performed to test the time-expanded sampling method against the conventional ensemble sampling method used by ensemble-based filters. In these experiments, the ensemble square-root filter (EnSRF) was used with 45 ensemble members generated by the time-expanded sampling and conventional sampling from 15 and 45 prediction runs, respectively, and quality-controlled radar data were compressed into super-observations with properly reduced spatial resolutions to improve the EnSRF performances. The results show that the time-expanded sampling approach not only can reduce the computational cost but also can improve the accuracy of the analysis, especially when the ensemble size is severely limited due to computational constraints for real-radar data assimilation. These potential merits are consistent with those previously demonstrated by assimilation experiments with simulated data.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return