Advanced Search
Article Contents

Numerical Study of the Mesoscale Systems in the Spiral Rainband of 0509 Typhoon Matsa


doi: 10.1007/s00376-010-0023-2

  • Advanced Research WRF is used to simulate the local heavy rainstorm process caused by typhoon Matsa in northeastern coast of Zhejiang province in 2005. The results show that the rainstorm was mainly caused by the secondary spiral rainband of Stationary Band Complex (SBC) structure. Within the secondary spiral rainband there was strong meso--scale convergence line generated in the boundary layer, corresponding very well to the Doppler radar echo band. The convergence line was consisted of several smaller convergence centers, and all of these convergence columns inclined outward. Along the convergence line there was precipitation larger than 20 mm occurring in the next 1 hour. During the heavy rainstorm process, the Doppler radar echo band, convergence line and the next 1-h precipitation moved and evolved synchronously. Further study reveals that the vertical shear of radial wind and the low-level jet of tangential wind contributed to the genesis and development of convergence columns. The collaboration of ascending leg of the clockwise secondary circulation of radial wind and the favorable environment of the entrance region of the low-level jet of tangential wind further strengthened the convergence. The warm-moist inflow in the low level was brought in by the inflows of the clockwise secondary circulation and uplifted intensely at the effect of convergence. In the convective instable environment, strong convection was triggered to produce heavy rainstorm.
  • [1] XU Yamei, WU Rongsheng, 2003: The Conservation of Helicity in Hurricane Andrew (1992) and the Formation of the Spiral Rainband, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 940-950.  doi: 10.1007/BF02915517
    [2] MING Jie, NI Yunqi, SHEN Xinyong, 2009: The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 26, 523-542.  doi: 10.1007/s00376-009-0523-0
    [3] Honglei ZHANG, Ming XUE, Hangfeng SHEN, Xiaofan LI, Guoqing ZHAI, 2024: Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System: Importance of Back-Building Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 847-863.  doi: 10.1007/s00376-023-3033-6
    [4] Xin LI, Mingjian ZENG, Yuan WANG, Wenlan WANG, Haiying WU, Haixia MEI, 2016: Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1143-1157.  doi: 10.1007/s00376-016-5255-3
    [5] HAN Ying, WU Rongsheng, FANG Juan, 2006: Shearing Wind Helicity and Thermal Wind Helicity, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 504-512.  doi: 10.1007/s00376-006-0504-5
    [6] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [7] Fu Baopu, 1987: VARIATION IN WIND VELOCITY OVER WATER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 93-104.  doi: 10.1007/BF02656665
    [8] Zhao Ming, Xu Yinzi, Wu Rongsheng, 1989: The Wind Structure in Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 365-376.  doi: 10.1007/BF02661542
    [9] LI Qingqing, DUAN Yihong, YU Hui, FU Gang, 2010: Finescale Spiral Rainbands Modeled in a High-Resolution Simulation of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 685-704.  doi: 10.1007/s00376-009-9127-y
    [10] MIAO Shiguang, LI Pingyang, WANG Xiaoyun, 2009: Building Morphological Characteristics and Their Effect on the Wind in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1115-1124.  doi: 10.1007/s00376-009-7223-7
    [11] Federico OTERO, Diego C. ARANEO, 2022: Forecasting Zonda Wind Occurrence with Vertical Sounding Data, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 161-177.  doi: 10.1007/s00376-021-1007-0
    [12] SHUN Liu, QIU Chongjian, XU Qin, ZHANG Pengfei, GAO Jidong, SHAO Aimei, 2005: An Improved Method for Doppler Wind and Thermodynamic Retrievals, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 90-102.  doi: 10.1007/BF02930872
    [13] S.K. Sinha, S. Rajamani, 1995: Multivariate Objective Analysis of Wind and Height Fields in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 233-244.  doi: 10.1007/BF02656836
    [14] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [15] Jang-Woon WANG, Jae-Jin KIM, Wonsik CHOI, Da-Som MUN, Jung-Eun KANG, Hataek KWON, Jin-Soo KIM, Kyung-Soo HAN, 2017: Effects of Wind Fences on the Wind Environment around Jang Bogo Antarctic Research Station, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1404-1414.  doi: 10.1007/s00376-017-6333-x
    [16] Ning ZHANG, Yunsong DU, Shiguang MIAO, Xiaoyi FANG, 2016: Evaluation of a Micro-scale Wind Model's Performance over Realistic Building Clusters Using Wind Tunnel Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 969-978.  doi: 10.1007/s00376-016-5273-1
    [17] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [18] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [19] Tan Zhemin, Wang Yuan, 2002: Wind Structure in an Intermediate Boundary Layer Model Based on Ekman Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 266-278.  doi: 10.1007/s00376-002-0021-0
    [20] HU Banghui, YANG Xiuqun, TAN Yanke, WANG Yongqing, FAN Yong, 2010: A New Method for Calculating the Wind Speed Distribution of a Moving Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 69-79.  doi: 10.1007/s00376-009-7209-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2011
Manuscript revised: 10 January 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Study of the Mesoscale Systems in the Spiral Rainband of 0509 Typhoon Matsa

  • 1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang Province Meteorological Observatory, Hangzhou 310017,Department of Earth Sciences, Zhejiang University, Hangzhou 310027,Jiaxing Meteorological Observatory, Jiaxing 314001

Abstract: Advanced Research WRF is used to simulate the local heavy rainstorm process caused by typhoon Matsa in northeastern coast of Zhejiang province in 2005. The results show that the rainstorm was mainly caused by the secondary spiral rainband of Stationary Band Complex (SBC) structure. Within the secondary spiral rainband there was strong meso--scale convergence line generated in the boundary layer, corresponding very well to the Doppler radar echo band. The convergence line was consisted of several smaller convergence centers, and all of these convergence columns inclined outward. Along the convergence line there was precipitation larger than 20 mm occurring in the next 1 hour. During the heavy rainstorm process, the Doppler radar echo band, convergence line and the next 1-h precipitation moved and evolved synchronously. Further study reveals that the vertical shear of radial wind and the low-level jet of tangential wind contributed to the genesis and development of convergence columns. The collaboration of ascending leg of the clockwise secondary circulation of radial wind and the favorable environment of the entrance region of the low-level jet of tangential wind further strengthened the convergence. The warm-moist inflow in the low level was brought in by the inflows of the clockwise secondary circulation and uplifted intensely at the effect of convergence. In the convective instable environment, strong convection was triggered to produce heavy rainstorm.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return