Advanced Search
Article Contents

Assessment of Dynamic Downscaling of the Extreme Rainfall over East Asia Using a Regional Climate Model


doi: 10.1007/s00376-010-0039-7

  • This study investigates the capability of the dynamic downscaling method (DDM) in an East Asian climate study for June 1998 using the fifth-generation Pennsylvania State University--National Center for Atmospheric Research non-hydrostatic Mesoscale Model (MM5). Sensitivity experiments show that MM5 results at upper atmospheric levels cannot match reanalyses data, but the results show consistent improvement in simulating moisture transport at low levels. The downscaling ability for precipitation is regionally dependent. During the monsoon season over the Yangtze River basin and the pre-monsoon season over North China, the DDM cannot match observed precipitation. Over Northwest China and the Tibetan Plateau (TP), where there is high topography, the DDM shows better performance than reanalyses. Simulated monsoon evolution processes over East Asia, however, are much closer to observational data than reanalyses. The convection scheme has a substantial impact on extreme rainfall over the Yangtze River basin and the pre-monsoon over North China, but only a marginal contribution for Northwest China and the TP. Land surface parameterizations affect the locations and pattern of rainfall bands. The 10-day re-initialization in this study shows some improvement in simulated precipitation over some sub-regions but with no obvious improvement in circulation. The setting of the location of lateral boundaries (LLB) westward improves performance of the DDM. Including the entire TP in the western model domain improves the DDM performance in simulating precipitation in most sub-regions. In addition, a seasonal simulation demonstrates that the DDM can also obtain consistent results, as in the June case, even when another two months consist of no strong climate/weather events.
  • [1] FU Danhong, GUO Xueliang, 2006: A Cloud-resolving Study on the Role of Cumulus Merger in MCS with Heavy Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 857-868.  doi: 10.1007/s00376-006-0857-9
    [2] ZHOU Yang, JIANG Jing, Youyu LU, and HUANG Anning, 2013: Revealing the effects of the El Nio-Southern oscillation on tropical cyclone intensity over the western North Pacific from a model sensitivity study, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1117-1128.  doi: 10.1007/s00376-012-2109-5
    [3] JING Li, LU Hancheng, WANG Hanjie, ZHU Min, KOU Zheng, 2004: A Mesoscale Analysis of Heavy Rain Caused by Frontal and Topographical Heterogeneities on Taiwan Island, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 909-922.  doi: 10.1007/BF02663597
    [4] LIN Wenshi, Cholaw BUEH, 2006: The Cloud Processes of a Simulated Moderate Snowfall Event in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 235-242.  doi: 10.1007/s00376-006-0235-7
    [5] GAO Shanhong, LIN Hang, SHEN Biao, FU Gang, 2007: A Heavy Sea Fog Event over the Yellow Sea in March 2005: Analysis and Numerical Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 65-81.  doi: 10.1007/s00376-007-0065-2
    [6] MA Yan, CHEN Shang, 2007: Validation of the Polar MM5 for Use in the Simulation of the Arctic River Basins, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 863-874.  doi: 10.1007/s00376-007-0863-6
    [7] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [8] Xiao Qingnong, Guo Weidong, Zhou Xiaoping, 1996: Preliminary Results from Numerical Experiments of a Heavy Rain Process with PENN STATE / NCAR MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 539-547.  doi: 10.1007/BF03342044
    [9] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [10] PING Fan, GAO Shouting, WANG Huijun, 2003: An Improvement of the Mass Flux Convection Parameterization Scheme and its Sensitivity Tests for Seasonal Prediction over China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 978-990.  doi: 10.1007/BF02915521
    [11] Chao Jiping, 1984: DYNAMICS OF LATERAL BOUNDARY MESO-SCALE JET IN THE OCEAN AND ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 199-213.  doi: 10.1007/BF02678132
    [12] Duan Tingyang, Elmar R. Reiter, 1990: Some Characteristics of Cumulus Convection over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 87-97.  doi: 10.1007/BF02919171
    [13] Cheng Anning, Chen Wen, Huang Ronghui, 1998: The Sensitivity of Numerical Simulation of the East Asian Monsoon to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 204-220.  doi: 10.1007/s00376-998-0040-6
    [14] LIU Shuhua, YUE Xu, LIU Huizhi, HU Fei, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Study the Sensitivity of Land Surface and Boundary Layer Processes to Soil and Vegetation Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 717-729.  doi: 10.1007/BF02916369
    [15] Zhao Ming, 1987: ON THE PARAMETERIZATION OF THE VERTICAL VELOCITY AT THE TOP OF PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 233-239.  doi: 10.1007/BF02677070
    [16] Ding Yihui, Liu Yuezhen, 1987: THE EFFECT OF VERTICAL TRANSPORTS OF HEAT AND MOISTURE BY CUMULUS CONVECTION IN TYPHOON, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 278-286.  doi: 10.1007/BF02663598
    [17] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [18] LIU Shuhua, YUE Xu, HU Fei, LIU Huizhi, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 245-259.  doi: 10.1007/BF02915711
    [19] Huang Ronghui, Wu Bingyi, Sung-Gil Hong, Jai-Ho Oh, 2001: Sensitivity of Numerical Simulations of the East Asian Summer Monsoon Rainfall and Circulation to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 23-41.  doi: 10.1007/s00376-001-0002-8
    [20] Zhang Yu, Lu Shihua, 2002: Development and Validation of a Simple Frozen Soil Parameterization Scheme Used for Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 513-527.  doi: 10.1007/s00376-002-0083-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2011
Manuscript revised: 10 September 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Assessment of Dynamic Downscaling of the Extreme Rainfall over East Asia Using a Regional Climate Model

  • 1. Laboratory for Climate Environment and Disasters of Western China, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,Department of Geography and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA,Laboratory for Climate Environment and Disasters of Western China, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,Climate Research Laboratory National Institute of Meteorological Research Korea Meteorological Administration, Korea,et Propulsion Laboratory/California Institute of Technology, California, USA

Abstract: This study investigates the capability of the dynamic downscaling method (DDM) in an East Asian climate study for June 1998 using the fifth-generation Pennsylvania State University--National Center for Atmospheric Research non-hydrostatic Mesoscale Model (MM5). Sensitivity experiments show that MM5 results at upper atmospheric levels cannot match reanalyses data, but the results show consistent improvement in simulating moisture transport at low levels. The downscaling ability for precipitation is regionally dependent. During the monsoon season over the Yangtze River basin and the pre-monsoon season over North China, the DDM cannot match observed precipitation. Over Northwest China and the Tibetan Plateau (TP), where there is high topography, the DDM shows better performance than reanalyses. Simulated monsoon evolution processes over East Asia, however, are much closer to observational data than reanalyses. The convection scheme has a substantial impact on extreme rainfall over the Yangtze River basin and the pre-monsoon over North China, but only a marginal contribution for Northwest China and the TP. Land surface parameterizations affect the locations and pattern of rainfall bands. The 10-day re-initialization in this study shows some improvement in simulated precipitation over some sub-regions but with no obvious improvement in circulation. The setting of the location of lateral boundaries (LLB) westward improves performance of the DDM. Including the entire TP in the western model domain improves the DDM performance in simulating precipitation in most sub-regions. In addition, a seasonal simulation demonstrates that the DDM can also obtain consistent results, as in the June case, even when another two months consist of no strong climate/weather events.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return