Advanced Search
Article Contents

A 35-GHz Polarimetric Doppler Radar and Its Application for Observing Clouds Associated with Typhoon Nuri


doi: 10.1007/s00376-010-0073-5

  • Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolarization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.
  • [1] GUO Xueliang, FU Danhong, LI Xingyu, HU Zhaoxia, LEI Henchi, XIAO Hui, HONG Yanchao, 2015: Advances in Cloud Physics and Weather Modification in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 230-249.  doi: 10.1007/s00376-014-0006-9
    [2] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [3] Su-Bin OH, Yeon-Hee KIM, Ki-Hoon KIM, Chun-Ho CHO, Eunha LIM, 2016: Verification and Correction of Cloud Base and Top Height Retrievals from Ka-band Cloud Radar in Boseong, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 73-84.  doi: 10.1007/s00376-015-5058-y
    [4] Lijun ZHAO, Yuan WANG, Chuanfeng ZHAO, Xiquan DONG, Yuk L. YUNG, 2022: Compensating Errors in Cloud Radiative and Physical Properties over the Southern Ocean in the CMIP6 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2156-2171.  doi: 10.1007/s00376-022-2036-z
    [5] MIAO Qun, and Bart GEERTS, 2013: Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1025-1038.  doi: 10.1007/s00376-012-2128-2
    [6] MA Jianzhong, GUO Xueliang, ZHAO Chunsheng, ZHANG Yijun, HU Zhijin, 2007: Recent Progress in Cloud Physics Research in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1121-1137.  doi: 10.1007/s00376-007-1121-7
    [7] WU Chong, and LIU Liping, 2014: Comparison of the Observation Capability of an X-band Phased-array Radar with an X-band Doppler Radar and S-band Operational Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 814-824.  doi: 10.1007/s00376-013-3072-5
    [8] ZONG Rong, LIU Liping, YIN Yan, 2013: Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1275-1286.  doi: 10.1007/s00376-013-2090-7
    [9] Juan HUO, Yongheng BI, Daren Lü, Shu DUAN, 2019: Cloud Classification and Distribution of Cloud Types in Beijing Using Ka-Band Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, , 793-803.  doi: 10.1007/s00376-019-8272-1
    [10] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y
    [11] LIU Liping, ZHANG Zhiqiang, YU Danru, YANG Hu, ZHAO Chonghui, ZHONG Lingzhi, 2012: Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1318-1329.  doi: 10.1007/s00376-012-1233-6
    [12] Ling YANG, Yun WANG, Zhongke WANG, Qian YANG, Xingang FAN, Fa TAO, Xiaoqiong ZHEN, Zhipeng YANG, 2020: Automatic Identification of Clear-Air Echoes Based on Millimeter-wave Cloud Radar Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 912-924.  doi: 10.1007/s00376-020-9270-z
    [13] Liping LIU, Jiafeng ZHENG, Jingya WU, 2017: A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 545-558.  doi: 10.1007/s00376-016-6044-8
    [14] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [15] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [16] WANG Pengyun, YANG Jing, 2003: Observation and Numerical Simulation of Cloud Physical Processes Associated with Torrential Rain of the Meiyu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 77-96.  doi: 10.1007/BF03342052
    [17] Yujie PAN, Mingjun WANG, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 160-172.  doi: 10.1007/s00376-018-8087-5
    [18] Bo LIU, Juan HUO, Daren LYU, Xin WANG, 2021: Assessment of FY-4A and Himawari-8 Cloud Top Height Retrieval through Comparison with Ground-Based Millimeter Radar at Sites in Tibet and Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1334-1350.  doi: 10.1007/s00376-021-0337-2
    [19] Chen ZHOU, Yincheng LIU, Quan WANG, 2022: Calculating the Climatology and Anomalies of Surface Cloud Radiative Effect Using Cloud Property Histograms and Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2124-2136.  doi: 10.1007/s00376-021-1166-z
    [20] YU Xing, DAI Jin, LEI Hengchi, FAN Peng, 2005: Comparison Between Computer Simulation of Transport and Diffusion of Cloud Seeding Material Within Stratiform Cloud and the NOAA-14 Satellite Cloud Track, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 133-141.  doi: 10.1007/BF02930877

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A 35-GHz Polarimetric Doppler Radar and Its Application for Observing Clouds Associated with Typhoon Nuri

  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,Beijing Institute of Radio Measurement, Beijing 100000,State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,Beijing Institute of Radio Measurement, Beijing 100000

Abstract: Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolarization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return