Advanced Search
Article Contents

A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou


doi: 10.1007/s00376-010-0079-z

  • By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, a physical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.
  • [1] FAN Ke, WANG Huijun, 2007: Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 15-23.  doi: 10.1007/s00376-007-0015-z
    [2] LI Yunying, YU Rucong, XU Youping, ZHOU Tianjun, 2005: AREM Simulations of Cloud Features over Eastern China in February 2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 260-270.  doi: 10.1007/BF02918515
    [3] Zhong Zhong, Wang Hanjie, 2000: A Study of the Relationship between Low-level Jet and Inversion Layer over an Agroforest Ecosystem in East China Plain?, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 299-310.  doi: 10.1007/s00376-000-0011-z
    [4] ZHANG Wu, HU Bo, CHEN Changhe, DU Ping, ZHANG Lei, FENG Guanghong, 2004: Scattering Properties of Atmospheric Aerosols over Lanzhou City and Applications Using an Integrating Nephelometer, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 848-856.  doi: 10.1007/BF02915587
    [5] BIAN Jianchun, CHEN Hongbin, 2008: Statistics of the Tropopause Inversion Layer over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 381-386.  doi: 10.1007/s00376-008-0381-1
    [6] Chen Panqin, 1985: NUMERICAL SIMULATION FOR THE EFFECTS OF PBL AND THE SURFACE ON POLLUTANT CONCENTRATIONS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 251-259.  doi: 10.1007/BF03179757
    [7] WANG Yuesi, HU Yuqiong, JI Baoming, LIU Guangren, XUE Min, 2003: An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Semiarid Grassland, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 119-127.  doi: 10.1007/BF03342056
    [8] Huang Sixun, 1996: Inversion and Ill-Posed Problem Solutions in Atmospheric Remote Sensing, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 489-504.  doi: 10.1007/BF03342039
    [9] Qiu Jinhuan, 1999: Constraint Inversion Algorithm of Lidar Equation for Deriving Aerosol Optical Property, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 216-228.  doi: 10.1007/BF02973083
    [10] JIANG Yujun, LIU Huizhi, SANG Jianguo, ZHANG Boyin, 2007: Numerical and Experimental Studies on Flow and Pollutant Dispersion in Urban Street Canyons, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 111-125.  doi: 10.1007/s00376-007-0111-0
    [11] HU Wei, ZHONG Qin, 2010: Using the OSPM Model on Pollutant Dispersion in an Urban Street Canyon, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 621-628.  doi: 10.1007/s00376-009-9064-9
    [12] Dongxu YANG, Huifang ZHANG, Yi LIU, Baozhang CHEN, Zhaonan CAI, Daren LÜ, 2017: Monitoring Carbon Dioxide from Space: Retrieval Algorithm and Flux Inversion Based on GOSAT Data and Using CarbonTracker-China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 965-976.  doi: 10.1007/s00376-017-6221-4
    [13] ZHAO Bingke, WU Guoxiong, YAO Xiuping, 2007: Potential Vorticity Structure and Inversion of the Cyclogenesis Over the Yangtze River and Huaihe River Valleys, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 44-54.  doi: 10.1007/s00376-007-0044-7
    [14] Ning ZHANG, Yunsong DU, Shiguang MIAO, 2016: A Microscale Model for Air Pollutant Dispersion Simulation in Urban Areas: Presentation of the Model and Performance over a Single Building, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 184-192.  doi: 10.1007/s00376-015-5152-1
    [15] Zhong Shiyuan, Zhou Mingyu, Li Xingsheng, 1987: A NUMERICAL STUDY ON THE MESO-SCALE POLLUTANT DISPERSION OVER A SLOPED SURFACE IN THE STABLE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 300-312.  doi: 10.1007/BF02663600
    [16] Xiang Kezong, 1988: THE CELL-MOVE-EXPANSION MODEL FOR THE EVALUA-TION OF GROUND LEVEL POLLUTANT CONCENTRATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 325-334.  doi: 10.1007/BF02656756
    [17] Jiang Weimei, Yu Hongbin, 1994: Study on the Thermal Internal Boundary Layer and Dispersion of Air Pollutant in Coastal Area by Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 285-290.  doi: 10.1007/BF02658147
    [18] Qie Xiushu, Guo Changming, Liu Xinsheng, 1991: The Characteristics of Ground Flashes in Beijing and Lanzhou Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 471-478.  doi: 10.1007/BF02919269
    [19] Xuechun LUO, Xiao TANG, Haoyue WANG, Lei KONG, Huangjian WU, Weiguo WANG, Yating SONG, Hongyan LUO, Yao WANG, Jiang ZHU, Zifa WANG, 2023: Investigating the Changes in Air Pollutant Emissions over the Beijing-Tianjin-Hebei Region in February from 2014 to 2019 through an Inverse Emission Method, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 601-618.  doi: 10.1007/s00376-022-2039-9
    [20] Ding Yuguo, Jiang Zhihong, 1998: Theoretical Relationship between SSA and MESA with Both Application, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 541-552.  doi: 10.1007/s00376-998-0031-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou

  • 1. Gansu Key Laboratory of Arid Climatic Change and Reducing Disaster, Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA,Institute of Arid Meteorology, Chinese Meteorological Administration, Lanzhou 730020, Gansu Provincial Meteorological Bureau, Lanzhou 730020, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000,College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu Key Laboratory of Arid Climatic Change and Reducing Disaster, Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Institute of Arid Meteorology, Chinese Meteorological Administration, Lanzhou 730020

Abstract: By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, a physical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return