Advanced Search
Article Contents

Effects of Crop Growth and Development on Land Surface Fluxes


doi: 10.1007/s00376-010-0105-1

  • In this study, the crop growth model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS_CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes had substantial changes when LAI was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluating the effects of crop growth and development on surface fluxes in China, two numerical experiments by BATS_CERES (CSM-run) and the original one BATS (CTL-run) conducted over the continental China. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crop in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulation and observation proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.
  • [1] ZHU Jiawen, ZENG Xiaodong, 2015: Comprehensive Study on the Influence of Evapotranspiration and Albedo on Surface Temperature Related to Changes in the Leaf Area Index, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 935-942.  doi: 10.1007/s00376-014-4045-z
    [2] Junhua YANG, Zhenming JI, Deliang CHEN, Shichang KANG, Congshen FU, Keqin DUAN, Miaogen SHEN, 2018: Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 628-644.  doi: 10.1007/s00376-017-7120-4
    [3] LI Tao, ZHENG Xiaogu, DAI Yongjiu, YANG Chi, CHEN Zhuoqi, ZHANG Shupeng, WU Guocan, WANG Zhonglei, HUANG Chengcheng, SHEN Yan, LIAO Rongwei, 2014: Mapping Near-surface Air Temperature, Pressure, Relative Humidity and Wind Speed over Mainland China with High Spatiotemporal Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1127-1135.  doi: 10.1007/s00376-014-3190-8
    [4] Jing Peng, Li Dan, xiba tang, 2023: Spatial variation in CO2 concentration improves simulated surface air temperature increase in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3249-5
    [5] XIE Zhenghui, SU Fengge, LIANG Xu, ZENG Qingcun, HAO Zhenchun, GUO Yufu, 2003: Applications of a Surface Runoff Model with Horton and Dunne Runoff for VIC, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 165-172.  doi: 10.1007/s00376-003-0001-z
    [6] Jianguo LIU, Zong-Liang YANG, Binghao JIA, Longhuan WANG, Ping WANG, Zhenghui XIE, Chunxiang SHI, 2023: Elucidating Dominant Factors Affecting Land Surface Hydrological Simulations of the Community Land Model over China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 235-250.  doi: 10.1007/s00376-022-2091-5
    [7] LI Hongqi, GUO Weidong, SUN Guodong, ZHANG Yaocun, FU Congbin, 2011: A New Approach for Parameter Optimization in Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1056-1066.  doi: 10.1007/s00376-010-0050-z
    [8] LI Fang, ZENG Xiaodong, SONG Xiang, TIAN Dongxiao, SHAO Pu, ZHANG Dongling, 2011: Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 775-788.  doi: 10.1007/s00376-010-0009-0
    [9] LIANG Miaoling, XIE Zhenghui, 2008: Improving the Vegetation Dynamic Simulation in a Land Surface Model by Using a Statistical-dynamic Canopy Interception Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 610-618.  doi: 10.1007/s00376-008-0610-7
    [10] Guo Weidong, Sun Shufen, Qian Yongfu, 2002: Case Analyses and Numerical Simulation of Soil Thermal Impacts on Land Surface Energy Budget Based on an Off-Line Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 500-512.  doi: 10.1007/s00376-002-0082-0
    [11] Dai Yongjiu, Zeng Qingcun, 1997: A Land Surface Model (IAP94) for Climate Studies Part I: Formulation and Validation in Off-line Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 433-460.  doi: 10.1007/s00376-997-0063-4
    [12] Dai Yongjiu, Xue Feng, Zeng Qingcun, 1998: A Land Surface Model (IAP94) for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 47-62.  doi: 10.1007/s00376-998-0017-5
    [13] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [14] Zhang Yu, Lu Shihua, 2002: Development and Validation of a Simple Frozen Soil Parameterization Scheme Used for Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 513-527.  doi: 10.1007/s00376-002-0083-z
    [15] Xiaofei GAO, Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, He ZHANG, 2022: Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1285-1298.  doi: 10.1007/s00376-021-1138-3
    [16] Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, Fang LI, Qian ZHANG, He ZHANG, Xiang SONG, 2018: Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 659-670.  doi: 10.1007/s00376-017-7154-7
    [17] Xia ZHANG, Mingxing LI, Zhuguo MA, Qing YANG, Meixia LV, Robin Clark, 2019: Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1273-1287.  doi: 10.1007/s00376-019-9061-6
    [18] Jinliang Liu, Han-Ru Cho, 2001: Effects of Topographic Slopes on Hydrological Proecsses and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 733-741.
    [19] Enda ZHU, Xing YUAN, 2021: Global Freshwater Storage Capability across Time Scales in the GRACE Satellite Era, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 905-917.  doi: 10.1007/s00376-021-0222-z
    [20] ZHANG Shuwen, LI Deqin, QIU Chongjian, 2011: A Multimodel Ensemble-based Kalman Filter for the Retrieval of Soil Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 195-206.  doi: 10.1007/s00376-010-9200-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effects of Crop Growth and Development on Land Surface Fluxes

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Zhejiang Institute of Meteorological Sciences, Hangzhou 310017,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this study, the crop growth model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS_CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes had substantial changes when LAI was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluating the effects of crop growth and development on surface fluxes in China, two numerical experiments by BATS_CERES (CSM-run) and the original one BATS (CTL-run) conducted over the continental China. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crop in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulation and observation proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return