Advanced Search
Article Contents

A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part I: Diagnostic Analysis of the Structure


doi: 10.1007/s00376-010-0170-5

  • An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21--22 June 2008, as well as their structural characteristics in different stages, by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment. The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex. There was a positive feedback interaction between the convection and the vortex, and the evolution of the MCV was closely related to the strength of the positive interaction. The most typical characteristics of the thermal structure in different stages were that, there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage; the thickness of diabatic heating layer significantly increased in the mature stage; and it almost disappeared in the decay stage. The characteristics of the dynamic structure were that, in the formative stage, there was no anticyclonic circulation at the high level; in the mature stage, an anticyclonic circulation with strong divergence was formed at the high level; in the decay stage, the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence. Finally, the structural schematics of the MCV in the formative and mature stage were established respectively.
  • [1] Hanying LI, Peng HU, Qiong ZHANG, Ashish SINHA, Hai CHENG, 2021: Understanding Interannual Variations of the Local Rainy Season over the Southwest Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1852-1862.  doi: 10.1007/s00376-021-1065-3
    [2] PENG Jiayi, FANG Juan, WU Rongsheng, 2004: Interaction of Mesoscale Convection and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 814-823.  doi: 10.1007/BF02916377
    [3] Yu Zhihao, Chen Liangdong, 1985: THE INFLUENCE OF HORIZONTALLY NON-UNIFORM HEATING UPON THE DEVELOPMENT OF STRONG CONVECTIVE MESOSCALE DISTURBANCES, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 347-358.  doi: 10.1007/BF02677251
    [4] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [5] CHEN Lianshou, LUO Zhexian, 2004: Interaction of Typhoon and Mesoscale Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 515-528.  doi: 10.1007/BF02915719
    [6] SUN Jianhua, ZHAO Sixiong, XU Guangkuo, MENG Qingtao, 2010: Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1193-1209.  doi: 10.1007/s00376-009-9156-6
    [7] WANG Xiaokang, NI Yunqi, XU Wenhui, GU Chunli, QIU Xuexing, 2011: Water Cycle and Microphysical Processes Associated with a Mesoscale Convective Vortex System in the Dabie Mountain Area, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1405-1422.  doi: 10.1007/s00376-011-0089-5
    [8] Jieshun ZHU, Entcho DEMIROV, Ying ZHANG, and Ania POLOMSKA-HARLICK, 2014: Model Simulations of Mesoscale Eddies and Deep Convection in the Labrador Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 743-754.  doi: 10.1007/s00376-013-3107-y
    [9] Ying ZHANG, Zhiyong MENG, Peijun ZHU, Tao SU, Guoqing ZHAI, 2016: Mesoscale Modeling Study of Severe Convection over Complex Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1259-1270.  doi: 10.1007/s00376-016-5221-0
    [10] LIPING LUO, Ming Xue, Xin Xu, Lijuan Li, Qiang Zhang, Ziqi Fan, 2024: Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast based on Convection-Permitting Simulations, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3314-8
    [11] Jing YANG, Gaopeng LU, Ningyu LIU, Haihua CUI, Yu WANG, Morris COHEN, 2017: Analysis of a Mesoscale Convective System that Produced a Single Sprite, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 258-271.  doi: 10.1007/s00376-016-6092-0
    [12] JIANG Yongqiang, WANG Yuan, HUANG Hong, 2012: A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1215-1226.  doi: 10.1007/s00376-012-1186-9
    [13] ZHONG Wei, LU Han-Cheng, Da-Lin ZHANG, 2010: Mesoscale Barotropic Instability of Vortex Rossby Waves in Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 243-252.  doi: 10.1007/s00376-009-8183-7
    [14] Yongqiang JIANG, Yuan WANG, Chaohui CHEN, Hongrang HE, Hong HUANG, 2019: A Numerical Study of Mesoscale Vortex Formation in the Midlatitudes: The Role of Moist Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 65-78.  doi: 10.1007/s00376-018-7234-3
    [15] Seung-Jae LEE, E. Hugo BERBERY, Domingo ALCARAZ-SEGURA, 2013: Effect of Implementing Ecosystem Functional Type Data in a Mesoscale Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1373-1386.  doi: 10.1007/s00376-012-2143-3
    [16] Na LI, Lingkun RAN, Linna ZHANG, Shouting GAO, 2017: Potential Deformation and Its Application to the Diagnosis of Heavy Precipitation in Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 894-908.  doi: 10.1007/s00376-017-6282-4
    [17] Dang Renqing, Tang Xinzhang, Zhang Jiacheng, 1992: Experiments in Forecasting Mesoscale Convective Weather over Changjiang Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 223-230.  doi: 10.1007/BF02657512
    [18] HAN Bo, ZHAO Cailing, LÜ Shihua, WANG Xin, 2015: A Diagnostic Analysis on the Effect of the Residual Layer in Convective Boundary Layer Development near Mongolia Using 20th Century Reanalysis Data, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 807-820.  doi: 10.1007/s00376-014-4164-6
    [19] Fan Beifen, Ye Jiadong, William R. Cotton, Gregory J. Tripoli, 1990: Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 154-170.  doi: 10.1007/BF02919153
    [20] YU Zifeng, LIANG Xudong, YU Hui, Johnny C. L. CHAN, 2010: Mesoscale Vortex Generation and Merging Process: A Case Study Associated with a Post-Landfall Tropical Depression, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 356-370.  doi: 10.1007/s00376-009-8091-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2011
Manuscript revised: 10 September 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part I: Diagnostic Analysis of the Structure

  • 1. School of Atmospheric Science, Nanjing University, Nanjing 210093, National Meteorological Information Center, Beijing 100081,State Key Lab of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,School of Atmospheric Science, Nanjing University, Nanjing 210093,Anhui Meteorological Observatory, Hefei 230031,School of Atmospheric Science, Nanjing University, Nanjing 210093,Pu Landian Meteorological Observatory, Pu Landian 116200

Abstract: An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21--22 June 2008, as well as their structural characteristics in different stages, by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment. The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex. There was a positive feedback interaction between the convection and the vortex, and the evolution of the MCV was closely related to the strength of the positive interaction. The most typical characteristics of the thermal structure in different stages were that, there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage; the thickness of diabatic heating layer significantly increased in the mature stage; and it almost disappeared in the decay stage. The characteristics of the dynamic structure were that, in the formative stage, there was no anticyclonic circulation at the high level; in the mature stage, an anticyclonic circulation with strong divergence was formed at the high level; in the decay stage, the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence. Finally, the structural schematics of the MCV in the formative and mature stage were established respectively.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return