Advanced Search
Article Contents

Changes in the Tropical Cyclone Genesis Potential Index over the Western North Pacific in the SRES A2 Scenario


doi: 10.1007/s00376-010-9096-1

  • The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.
  • [1] SONG Yajuan, WANG Lei, LEI Xiaoyan, WANG Xidong, 2015: Tropical Cyclone Genesis Potential Index over the Western North Pacific Simulated by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1539-1550.  doi: 10.1007/s00376-015-4162-3
    [2] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6
    [3] Haikun ZHAO, Chunzai WANG, Ryuji YOSHIDA, 2016: Modulation of Tropical Cyclogenesis in the Western North Pacific by the Quasi-Biweekly Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1361-1375.  doi: 10.1007/s00376-016-5267-z
    [4] Pan SONG, Jiang ZHU, Zhong ZHONG, Linlin QI, Xiaodan WANG, 2016: Impact of Atmospheric and Oceanic Conditions on the Frequency and Genesis Location of Tropical Cyclones over the Western North Pacific in 2004 and 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 599-613.  doi: 10.1007/s00376-015-5046-2
    [5] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [6] FANG Changfang*, WU Lixin, and ZHANG Xiang, 2014: The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 118-130.  doi: 10.1007/s00376-013-2260-7
    [7] Ruifen ZHAN, Yuqing WANG, Yihui DING, 2022: Impact of the Western Pacific Tropical Easterly Jet on Tropical Cyclone Genesis Frequency over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 235-248.  doi: 10.1007/s00376-021-1103-1
    [8] ZHAO Haikun, WU Liguang, ZHOU Weican, 2010: Assessing the Influence of the ENSO on Tropical Cyclone Prevailing Tracks in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1361-1371.  doi: 10.1007/s00376-010-9161-9
    [9] YUAN Zhuojian, QIAN Yu-Kun, QI Jindian, WU Junjie, 2012: The Potential Impacts of Warmer-Continent-Related Lower-Layer Equatorial Westerly Wind on Tropical Cyclone Initiation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 333-343.  doi: 10.1007/s00376-011-1100-x
    [10] Xiaoqin LU, Hui YU, Ming YING, Bingke ZHAO, Shuai ZHANG, Limin LIN, Lina BAI, Rijin WAN, 2021: Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 690-699.  doi: 10.1007/s00376-020-0211-7
    [11] Jie WU, Xuejie GAO, Yingmo ZHU, Ying SHI, Filippo GIORGI, 2022: Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 284-303.  doi: 10.1007/s00376-021-0286-9
    [12] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [13] Sining LING, Riyu LU, 2022: Tropical Cyclones over the Western North Pacific Strengthen the East Asia–Pacific Pattern during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 249-259.  doi: 10.1007/s00376-021-1171-2
    [14] Shumin CHEN, Weibiao LI, Zhiping WEN, Mingsen ZHOU, Youyu LU, Yu-Kun QIAN, Haoya LIU, Rong FANG, 2018: Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 423-434.  doi: 10.1007/s00376-017-7060-z
    [15] Yanchen ZHOU, Jiuwei ZHAO, Ruifen ZHAN, Peiyan CHEN, Zhiwei WU, Lan WANG, 2021: A Logistic-growth-equation-based Intensity Prediction Scheme for Western North Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1750-1762.  doi: 10.1007/s00376-021-0435-1
    [16] Hong HUANG, Dan WU, Yuan WANG, Zhen WANG, Yu LIU, 2024: Track-Pattern-Based Characteristics of Extratropical Transitioning Tropical Cyclones in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2330-4
    [17] Xi CAO, Shangfeng CHEN, Guanghua CHEN, Renguang WU, 2016: Intensified Impact of Northern Tropical Atlantic SST on Tropical Cyclogenesis Frequency over the Western North Pacific after the Late 1980s, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 919-930.  doi: 10.1007/s00376-016-5206-z
    [18] P. P. BABURAJ, S. ABHILASH, K. MOHANKUMAR, A. K. SAHAI, 2020: On the Epochal Variability in the Frequency of Cyclones during the Pre-Onset and Onset Phases of the Monsoon over the North Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 634-651.  doi: 10.1007/s00376-020-9070-5
    [19] LU Riyu*, DONG Huilin, SU Qin, and Hui DING, 2014: The 30-60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1-7.  doi: 10.1007/s00376-013-3019-x
    [20] ZHOU Yang, JIANG Jing, Youyu LU, and HUANG Anning, 2013: Revealing the effects of the El Nio-Southern oscillation on tropical cyclone intensity over the western North Pacific from a model sensitivity study, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1117-1128.  doi: 10.1007/s00376-012-2109-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2010
Manuscript revised: 10 November 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Changes in the Tropical Cyclone Genesis Potential Index over the Western North Pacific in the SRES A2 Scenario

  • 1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Science, Beijing 100049,Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029,Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029,Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Department of Geophysics, University of Bergen, Allegaten 70, 5007 Bergen, Norway

Abstract: The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return