Advanced Search
Article Contents

Validation of ECMWF and NCEP--NCAR Reanalysis Data in Antarctica


doi: 10.1007/s00376-010-9140-1

  • The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and NCEP--NCAR reanalysis data were compared with Antarctic station observations, including surface-layer and upper-layer atmospheric observations, on intraseasonal and interannual timescales. At the interannual timescale, atmospheric pressure at different height levels in the ERA-40 data are in better agreement with observed pressure than that in the NCEP--NCAR reanalysis data. ERA-40 reanalysis also outperforms NCEP--NCAR reanalysis in atmospheric temperature, except in the surface layer where the biases are somewhat larger. The wind velocity fields in both datasets do not agree well with surface- and upper-layer atmospheric observations. At intraseasonal timescales, both datasets capture the observed intraseasonal variability in pressure and temperature during austral winter.
  • [1] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [2] LI Tao, ZHENG Xiaogu, DAI Yongjiu, YANG Chi, CHEN Zhuoqi, ZHANG Shupeng, WU Guocan, WANG Zhonglei, HUANG Chengcheng, SHEN Yan, LIAO Rongwei, 2014: Mapping Near-surface Air Temperature, Pressure, Relative Humidity and Wind Speed over Mainland China with High Spatiotemporal Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1127-1135.  doi: 10.1007/s00376-014-3190-8
    [3] Hai ZHI, Rong-Hua ZHANG, Fei ZHENG, Pengfei LIN, Lanning WANG, Peng YU, 2016: Assessment of Interannual Sea Surface Salinity Variability and Its Effects on the Barrier Layer in the Equatorial Pacific Using BNU-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 339-351.  doi: 10.1007/s00376-015-5163-y
    [4] Chao LIU, Li FU, Dan YANG, David R. MILLER, Junming WANG, 2020: Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 90-104.  doi: 10.1007/s00376-019-9052-7
    [5] Fangyuan CHENG, Qinghua YANG, Changwei LIU, Bo HAN, Shijie PENG, Guanghua HAO, 2023: Evaluating Parameterizations for Turbulent Fluxes over the Landfast Sea-Ice Surface in Prydz Bay, Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1816-1832.  doi: 10.1007/s00376-023-2299-z
    [6] ZHU Renbin, SUN Liguang, YIN Xuebin, LIU Xiaodong, XING Guangxi, 2004: Summertime Surface N2O Concentration Observed on Fildes Peninsula Antarctica: Correlation with Total Atmospheric O3 and Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 204-210.  doi: 10.1007/BF02915706
    [7] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [8] HUANG Ronghui, ZHOU Liantong, CHEN Wen, 2003: The Progresses of Recent Studies on the Variabilities of the East Asian Monsoon and Their Causes, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 55-69.  doi: 10.1007/BF03342050
    [9] LU Riyu, YE Hong, Jong-Ghap JHUN, 2011: Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1246-1258.  doi: 10.1007/s00376-011-0222-5
    [10] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [11] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [12] SHENG Li, LIU Shuhua, Heping LIU, 2010: Influences of Climate Change and Its Interannual Variability on Surface Energy Fluxes from 1948 to 2000, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1438-1452.  doi: 10.1007/s00376-010-9215-z
    [13] YUAN Yuan, C. L. Johnny CHAN, ZHOU Wen, LI Chongyin, 2008: Decadal and Interannual Variability of the Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 856-866.  doi: 10.1007/s00376-008-0856-0
    [14] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [15] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [16] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [17] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [18] Hai ZHI, Rong-Hua ZHANG, Pengfei LIN, Peng YU, 2019: Interannual Salinity Variability in the Tropical Pacific in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 378-396.  doi: 10.1007/s00376-018-7309-1
    [19] HU Ruijin, LIU Qinyu, WANG Qi, J. Stuart GODFREY, MENG Xiangfeng, 2005: The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 220-229.  doi: 10.1007/BF02918511
    [20] YANG Junli, WANG Bin, GUO Yufu, WAN Hui, JI Zhongzhen, 2007: Comparison Between GAMIL, and CAM2 on Interannual Variability Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 82-88.  doi: 10.1007/s00376-007-0082-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2010
Manuscript revised: 10 September 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Validation of ECMWF and NCEP--NCAR Reanalysis Data in Antarctica

  • 1. Polar Research Institute of China, Shanghai 200136,Polar Research Institute of China, Shanghai 200136,Polar Research Institute of China, Shanghai 200136,National Center for Atmospheric Research, Boulder, CO 80307, USA,National Center for Atmospheric Research, Boulder, CO 80307, USA,National Center for Atmospheric Research, Boulder, CO 80307, USA,National Marine Environmental Forecast Center, Beijing 100081,Polar Research Institute of China, Shanghai 200136

Abstract: The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and NCEP--NCAR reanalysis data were compared with Antarctic station observations, including surface-layer and upper-layer atmospheric observations, on intraseasonal and interannual timescales. At the interannual timescale, atmospheric pressure at different height levels in the ERA-40 data are in better agreement with observed pressure than that in the NCEP--NCAR reanalysis data. ERA-40 reanalysis also outperforms NCEP--NCAR reanalysis in atmospheric temperature, except in the surface layer where the biases are somewhat larger. The wind velocity fields in both datasets do not agree well with surface- and upper-layer atmospheric observations. At intraseasonal timescales, both datasets capture the observed intraseasonal variability in pressure and temperature during austral winter.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return